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ABSTRACT
The increasing complexity of computer chips and the slow logic
synthesis process have become major bottlenecks in the hardware
design process, also hindering the ability of hardware generators
to make informed design decisions while considering hardware
costs. While various models have been proposed to predict physical
characteristics of hardware designs, they often suffer from limited
domain adaptability and open-source hardware design data scarcity.

In this paper, we present SNS v2, a fast, robust, and transfer-
able hardware synthesis predictor based on deep learning models.
Inspired by modern natural language processing models, SNS v2
adopts a three-phase training approach encompassing pre-training,
fine-tuning, and domain adaptation, enabling it to leverage more
abundant unlabeled and off-domain training data. Additionally,
we propose a novel contrastive learning approach based on cir-
cuit equivalence to enhance model robustness. Our experiments
demonstrate that SNS v2 achieves two to three orders of magnitude
faster speed compared to conventional EDA tools, while maintain-
ing state-of-the-art prediction accuracy. We also show that SNS v2
can be seamlessly integrated into hardware generator frameworks
for real-time cost estimation, resulting in higher quality design
recommendations in a significantly reduced time frame.

CCS CONCEPTS
• Hardware→ Integrated circuits; High-level and register-
transfer level synthesis; Logic synthesis; • Computing
methodologies→Machine learning.
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Integrated Circuits, RTL-level Synthesis, Logic Synthesis Prediction,
Neural Networks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0329-4/23/10. . . $15.00
https://doi.org/10.1145/3613424.3623794

ACM Reference Format:
Ceyu Xu, Pragya Sharma, Tianshu Wang, and Lisa Wu Wills. 2023. Fast,
Robust, and Transferable Prediction for Hardware Logic Synthesis. In 56th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
’23), October 28–November 01, 2023, Toronto, ON, Canada. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3613424.3623794

1 INTRODUCTION
The exponential growth in digital circuits (e.g., more transistors per
area, bigger chips, better manufacturing yield) has enabled more
complex and more capable hardware designs in recent decades.
Revolutionary advancements in the last two years in deep learning,
such as diffusion models used for image generation (e.g., DALL-
E2 [22]) and large languagemodels with trillions of parameters used
for text generation (e.g., GPT-4 [21], LLaMA [28]), posed unprece-
dented computational challenges. These computational challenges
necessitate even more sophisticated and versatile hardware designs,
resulting in an accelerated increase in hardware design complexity.
To evaluate and fabricate these ever-complex hardware designs,
much longer logic synthesis runtime is required to accurately model
hardware cost (e.g., power, area, and timing) and adhere to intricate
design rules and constraints (especially for sub-14nm technology
libraries). Further, optimizing for multiple targets such as minimiz-
ing power consumption in addition to maximizing performance
calls for the consideration of a much wider array of design choices,
resulting in hardware synthesis being a more time-consuming and
resource-intensive task.

In recent years, advancedmachine learning techniques have been
introduced to predict the synthesis results of hardware designs [15,
17, 29, 37, 40] in order to alleviate the need for running hundreds of
designs through traditional, time-consuming synthesis tool chains
(e.g., Synopsys Design Compiler [26]). However, these existing
works have several drawbacks. First, they often provide predictions
of one technology library only and they rely on a large dataset to
train the model [29, 37, 40]. For example, to predict synthesis results
for a 32nm technology node, the model is trained with hardware
synthesis “ground-truth” results generated via Synopsys DC using a
32nm technology library. To predict synthesis results for a different
technology node, such as 14nm or 7nm, the model will have to be
re-trained on 14nm or 7nm “ground-truth” synthesis results.

Second, prior works may only work for a specific domain of
hardware designs rather than any arbitrary hardware designs. For
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example, MAESTRO [17] framework only predicts the cost and per-
formance of neural network accelerators that follow their provided
taxonomy, and is unable to predict designs outside of the domain;
Aladdin [15] is only able to predict the designs that adapt to a pre-
defined SoC accelerator architecture. Third, models using a graph
neural network for prediction cannot scale to large enough designs
such as D-SAGE[29] and GRANNITE [40]. GRANNITE achieves
2045× speedup when predicting the power consumption of a small
adder pipeline while the speedup drops to 19× when predicting a
mini-RISC-V core.

In this work, we present SNS v2, a novel transferrable deep-
learning-based logic synthesis predictor that is capable of predicting
synthesis results of arbitrary hardware designs on multiple technol-
ogy nodes. SNS v2 improves the accuracy and robustness of the
original SNS model; in addition, it provides transferability across
technology libraries, which was not possible with the original SNS
model. SNS v2 employs the three-phase training approach used
widely in generative language models as to not have to retrain the
model for every technology node or operating condition with large
datasets and expensive re-training. In addition, SNS v2 uses a two-
level hierarchical graph neural network model by decomposing
large designs into smaller designs and training with high-quality
“ground-truth” synthesis results of smaller designs to ensure that
the model is scalable and can predict very large designs. SNS v2 can
predict synthesis results with significant speedup vs. traditional
synthesis toolchain while providing state-of-the-art accuracy and
robustness. SNS v2 focuses on predicting the logic synthesis results
(which only includes the area, power and timing delay) of RTL de-
signs, and thus detailed timing or runtime power reports, modeling
of the scratchpads or SRAMs, and predicting post-placement-and-
route results, are beyond the scope of this work.

We make the following contributions:

• We introduce an exceptionally rapid logic synthesis predic-
tor, SNS v2, capable of predicting synthesis results for a
diverse set hardware designs two to three orders of mag-
nitude faster than conventional synthesis toolchains. Our
model demonstrates state-of-the-art accuracy, robustness,
and generalizability in comparison to existing logic synthesis
predictors.
• We propose an innovative three-phase training methodol-
ogy that takes advantage of circuit functional equivalences,
facilitating the development of a highly generalizable logic
synthesis predictor using extensive unlabeled hardware de-
sign data.
• We present a case study illustrating the advantages of fast
cost estimation for complex hardware generators and the
seamless integration of SNS v2 into a hardware generator to
enable such rapid estimations. The case study demonstrates
that, with our model’s guidance, superior quality design
recommendations can be made in a significantly reduced
time frame.

2 MOTIVATION AND BACKGROUND
Machine learning has emerged as a powerful tool for addressing
complex problems in various domains including computer architec-
ture. Thus, researchers have developed diverse machine learning

techniques to tackle different aspects of hardware design, optimiza-
tion, and analysis.

One prevalent approach in this area is the application of Graph
Neural Networks (GNNs) for hardware designs. GNNs are particu-
larly well-suited for analyzing and learning from graph-structured
data, which is a natural fit for representing hardware components
and their interconnections. By leveraging GNNs, researchers have
made significant advancements in various tasks such as place-
ment and routing prediction [34], logic synthesis result predic-
tion [37], power consumption prediction [36], and performance
estimation [33].

While GNNs have shown great promises in hardware design,
their use still presents us with two inherent challenges. First, with
the increasing complexity and size of modern hardware designs,
GNNs struggle with high computational overhead and memory
consumption. Second, over-smoothing, when the graph node rep-
resentations tend to become indistinguishable as the number of
neural network layers increases, can be particularly detrimental for
hardware designs, since it can lead to the loss of local information.

To address these challenges, we propose the use of hierarchical
GNNs (HGNNs), since they not only scale much better compared to
typical message-passing GNNs, but also preserve local information
during training and inference.

2.1 Three-phase Training for Transfer Learning
and Data-Efficient Learning

Machine learning models are highly dependent on data, and lim-
ited data availability can lead to poor learning performance. To
address this issue, numerous models and techniques have been
proposed. One of these techniques is the three-phase training ap-
proach, which is especially effective for data-efficient learning. This
approach, inspired by the success of generative language models,
is comprised of three stages: pre-training, fine-tuning, and domain-
specific adaptation. (Note: the word domain used in the machine
learning context, refers to a task domain such as a semantic analy-
sis task domain, unlike application domain used in the computer
architecture context.) The motivation for this approach is that well-
labeled data for a specific domain is often scarce, while labeled data
in a broader domain is relatively more abundant, and unlabeled
data is typically abundant. Because of this, the three-phase train-
ing method leverages the abundant unlabeled data and off-domain
labeled data to improve the model’s performance on the scarce
in-domain labeled data. (Note: using the previous example to ex-
plain domain, a pre-trained language model may have an in-domain
task that is a question-answering task. An off-domain task in this
context would correspond to another language task domain such
as semantic analysis.)

An example of the three-phase training approach is the BERT
model [5], which was designed for natural language processing.
First, the token (word) embedding of BERT is pre-trained on a vast
corpus of unlabeled text (e.g., all written content on the internet).
Next, the entire BERT model is fine-tuned on a large corpus of
labeled text obtained from various domains. Finally, the BERTmodel
can be further fine-tuned on a specific domain, such as sentiment
analysis, using only a small amount of labeled data to achieve higher
performance.
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Data scarcity has been a significant challenge for previous
works [29, 34, 37] that apply deep learning models to hardware
designs. In this work, we address this issue by using the three-
phase training approach to predict the synthesis results of hardware
designs. First, we pre-train our model using a large amount of unla-
beled designs. Next, we fine-tune the model in a supervised manner,
leveraging feedback from synthesis tools. Finally, we demonstrate
that our model can transfer to another technology library, even
with a test set as small as one sample.

2.2 Contrastive Learning for Robustness of the
Model

The primary benefit of the pre-training phase lies in its ability to
enable the model to learn circuit design representations without
relying on labeled data. However, what forms the foundation for pre-
training the model remains a critical question. Popular pre-training
methods, such as Word2Vec [19], Node2Vec [9], and masked lan-
guage models [5], rely on the assumption that similar words, nodes,
and tokens should be represented by similar vectors. But in the
context of hardware designs, what constitutes similarity remains
unclear.

In this work, we investigate the notion of similarity in the con-
text of hardware designs by analyzing the limitations of existing
works. Previous research [29, 34, 35, 37] predicts hardware costs
using some type of intermediate representation (IR) of the hardware
designs. The machine learning models then forecast the physical
properties of the hardware design based on the IR input. However,
this approach has a fundamental flaw: two distinct circuit repre-
sentations may depict the same functionality and identical circuit
implementation. For instance, 𝑎+𝑏 and 𝑎+𝑏 +1−1 represent equiv-
alent computational circuits, but they have different IRs and appear
to be different. In fact, compilers and EDA (electronic design au-
tomation) tools utilize these legal transformations and equivalences
of circuits for optimization.

We propose a contrastive-learning-based, pre-training method
that assists the model in learning circuit equivalences. By pre-
training the model in this way, we found that it not only improved
the model’s ability to infer the equivalence of hardware circuits but
also substantially enhanced the overall accuracy of downstream
tasks such as predicting synthesis results. More details on con-
trastive learning is described in Section 3.4.

3 MODEL
The three-phase training process is well-regarded for enhancing a
model’s performance, especially with limited data, which is crucial
for predicting hardware synthesis outcomes. In this study, we pro-
pose a novel approach by applying the three-phase training process
to our synthesis predictor, SNS v2. This approach is similar to NLP
model training but incorporates domain knowledge of RTL circuits.

Figure 1 provides an overview of SNS v2. SNS v2 takes a hardware
design in Verilog, SystemVerilog, or FIRRTL [12] format as input
and utilizes our circuit graph compiler 1○ to convert the input
hardware description language (HDL) into a graph intermediate
representation we call circuitIR, shown in Figure 1(a). FIRRTL, or
Flexible Intermediate Representation for RTL, is an intermediate
representation for digital circuits, which we use in our model. It is
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Figure 1: Overview of SNS v2.

part of the Chisel HDL compilation toolchain [3]. FIRRTL represents
the circuit immediately after Chisel’s elaboration and is designed
to appear identical to the Chisel HDL once all meta-programming
has been executed. FIRRTL is not only tied to Chisel, as other
HDLs written in various languages can target FIRRTL and reuse
the majority of the compilation toolchain.

Once we obtain the intermediate reprsentation, we sample sub-
graphs from it using our custom subgraph sampling algorithm 2○,
producing a set of subgraphs and a dependency graph between
subgraphs as shown in Figure 1(b). We then apply a hierarchical
GNNmodel with two levels of GNNs to predict the synthesis results.
The first-level GNN is a subgraph GNN (subgraphGNN 3○) that
produces embedding vectors for the subgraphs. These embeddings
are then fed into the second-level GNN, the circuitGNN 4○, which
takes the dependency graph and subgraph embeddings as input
and predicts the synthesis results of the entire hardware design.

Our method’s three-phase training process is compared to typi-
cal NLP models in Figure 2. The subgraphGNN is pre-trained on
unlabeled subgraphs using a contrastive method, similar to how
NLP models pre-train on unlabeled data. Figure 2(a) 1○ and 2(c) 1○
compare the pre-training process of our method to that of a typical
NLP model. During fine-tuning, both the subgraphGNN and the cir-
cuitGNN are fine-tuned using feedback from the EDA tools, rather
than unlabeled, general data. Figure 2(a) 2○ and 2(c) 2○ compare the
fine-tuning process of our method to that of a typical NLP model. Fi-
nally, as shown in Figure 2(b) 3○ and 2(d) 3○, our method and typical
NLP models can be further fine-tuned on a specific task or domain,
a procedure called domain adaptation. This is particularly useful
for our method, as labeled datasets for specific synthesis targets
can be challenging to collect.

3.1 Circuit Graph Compiler
Extracting features directly from HDLs can be challenging due to
their syntax, which often provides obscure and abstract information
about the implementation and functionalities, especially in code for
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Figure 2: Analogy between SNS v2’s three-phase training process and the NLP model training process.

hardware generation. To overcome this, a popular method used in
previous works [29, 34, 35, 37] is adopted. This involves converting
the HDLs to a graph intermediate representation that is easier for
neural networks to process.

The process flow of the SNS v2 circuit graph compiler is illus-
trated in Figure 1. For a hardware design in Chisel HDL, the internal
compiler of the Chisel framework is used to convert the HDL into
the FIRRTL intermediate representation. The generated FIRRTL is
then transformed into circuitIR using the SNS v2 circuit graph com-
piler. For a hardware design in Verilog, SystemVerilog, or VHDL,
the Yosys open source synthesis suite [32] is utilized to convert
the HDLs to FIRRTL. FIRRTL can then be processed by the SNS v2
circuit graph compiler to generate circuitIR.

The circuit graph compiler processes FIRRTL using two key
steps. First, it flattens the hardware design into a single top-level
module and creates a directed graph. Every node in the graph
represents a register (reg), a wire (in, out), or an operator (e.g.,
add, mul, concat, bits); the edges in the graph represent the
physical connections between the nodes. Second, it annotates the
graph nodes with the bit-width information. For example, a node
with type add and bit-width 32 (add.32) represents a 32-bit adder.

An example hardware design for an 8-bit dot product module is
shown in Figure 3. The Verilog code is listed in Figure 3(a), and the
compiled circuitIR is shown pictorially in Figure 3(b). The nodes
represent the input wires (x1, x2, y1, and y2), registers (x, y, and
z), and one output wire (out) with their node type, bit-widths, and
connection information annotated as graph features. This informa-
tion is preserved so that the original design can be reconstructed
from circuitIR. This lossless conversion allows us to implement a

bi-directional transformation between HDLs and circuitIR, which is
unique to previous works and is essential for SNS v2. With this fea-
ture, we can augment our dataset and use hierarchical graph neural
networks with multi-step fine-tuning, as detailed in Sections 3.2
and 4.2.

3.2 Hierarchical GNNs
Previous works [29, 34, 35] have mainly relied on GNNs to predict
synthesis results from the hardware design’s graph intermediate
representation. Although this approach can be both simple and
effective, it still has its limitations. For instance, the GNN model
operates in an "end-to-end" fashion, directly predicting the design’s
physical characteristics from its graph intermediate representation.
The end-to-end GNN approach has a significant drawback: its in-
ability to capture the hierarchical nature of RTL circuit designs.
RTL designs have a hierarchical structure that provides valuable
insights for extracting features from the designs. The entire circuit
graph can be divided into two levels of hierarchy: combinational
logic between nodes that are input/output wires and registers, and
the data dependencies between these nodes and other similar nodes.
Taking into account these hierarchical aspects can lead to a more
comprehensive understanding of RTL designs, enabling improved
analysis and optimization techniques.

The end-to-end GNNs also struggle to scale to large designs,
and the model must either compromise at the level of abstraction
or at the hardware design size. For instance, utilizing a higher
abstraction to represent a hardware design results in a smaller
graph intermediate representation, but the detailed features of the
design are lost (e.g., D-SAGE [29] operates at an HLS semantic level).



Fast, Robust, and Transferable Prediction for Hardware Logic Synthesis MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

module dot_product (
    input wire                clk,
    input wire [7:0]        x1, x2, y1, y2,
    output wire [15:0]    out
);

    reg [15:0]                x, y, z;
    always @ (posedge clk) begin
        x = x1 * x2;
        y = y1 * y2;
        z = x + y;
    end
    
    assign out = z;

endmodule
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Figure 3: CircuitIR of a dot product circuit.

Prior work GRANNITE [40] can only predict power consumption
for hardware design sizes up to a small RISC-V core. In practice,
when predicting synthesis results, larger hardware designs are of
greater interest as they generally take longer to synthesize.

Hierarchical Graph Neural Networks (HGNNs) have recently
emerged as a powerful tool that leverages hierarchical graph repre-
sentation learning to efficiently capture the hierarchical structure
of graphs. By organizing nodes into hierarchical tiers and encoding
clusters of nodes before examining the entire graph, HGNNs can si-
multaneously learn both local and global features within the graph,
hence its recent emergence. This model is particularly relevant to
the analysis of hardware designs, as it can effectively incorporate
the inherent hierarchical nature of these RTL circuits. Furthermore,
HGNNs demonstrate impressive scalability when applied to large
graphs, as the size of intermediates at a single level of hierarchy is
generally constrained.

3.3 Subgraph Sampling
In SNS v2, we leverage a two-level hierarchical structure to model
RTL circuit designs, which consists of decomposed DAGs (Directed
Acyclic Graphs) from large designs we call subgraphs and a de-
pendency graph between the subgraphs. This approach is built on
similar concepts as the original SNS [37], which samples circuit
paths beginning and ending with register-type nodes or IO-type
nodes. However, instead of sampling circuit paths, SNS v2 samples
circuit subgraphs of the entire design with in, out, and reg nodes
as roots and leaves, and purely combinational logic in between. By
doing so, SNS v2 can incorporate domain-specific knowledge of
RTL designs into the HGNN model, leading to improved analysis
and optimization techniques.

Algorithm 1 illustrates how SNS v2 samples subgraphs from
the initial circuit graph generated via the circuit graph compiler.
The BFS algorithm starts from an out node or a reg node, and it
backtracks through the graph until it reaches another in or reg
node. The nodes traversed during this process form a subgraph.
By using this method, we can sample a subgraph for every out or
reg node in the entire circuit graph. While more complex graph
partitioning and sampling methods exist, we have found that using
a simple BFS back-tracing algorithm is sufficient for our purposes.
This algorithm provides faster computations compared to other

Function BFSBackTrace(𝑠):
𝑉 ← {𝑠} ; // Set of visited nodes

𝑄 ← {𝑠} ; // Queue with start node

while 𝑄 ≠ ∅ do
𝑢 ← dequeue 𝑄 ; // Current node

foreach 𝑣 ∈ 𝑢.outgoing() do
if 𝑡𝑦𝑝𝑒 (𝑣) ∈ {reg, in} then

return 𝑣 ; // Found register-typed

node

end
if 𝑣 ∉ 𝑉 then

𝑄 ← 𝑄 ∪ {𝑣} ; // Add unvisited node

to queue

𝑉 ← 𝑉 ∪ {𝑣} ; // Mark node as visited

𝑣 .setParent(𝑢) ; // Set parent node

end
end

end
return null ; // No register-typed node found
Algorithm 1: Customized BFS with Backtracing

advanced algorithms as sampling from different register nodes is
entirely independent, allowing ample parallelism and thus higher
processing throughput.

This approach also enables the efficient capture of the hierarchi-
cal characteristics of RTL circuit designs. Consider the dot product
graph representation shown in Figure 3(b). To obtain a set of sub-
graphs, the algorithm launches a BFS from each reg nodes, x, y, and
z, and the only output node out. The algorithm then outputs four
subgraphs, g1, g2, g3, and g4 respectively, as shown in Figure 3(c).
These subgraphs can then be fed into the first level of the hierarchi-
cal GNN we call the subgraphGNN, which produces an embedding
vector for each subgraph. However, to form a circuit-level predic-
tion, we need to combine the embedding vectors of the subgraphs.
This is where the second level of hierarchy in RTL circuit designs,
the data dependencies between subgraphs, can be incorporated.

The BFS back-tracing procedure provides a way to construct a
subgraph dependency graph (denoted as G’ shown in Figure 3(d))
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for the entire design, with nodes representing subgraphs and edges
representing data dependencies between subgraphs. We integrate
the subgraph embedding vectors, generated via the first-level sub-
graphGNN, by attaching embedding vectors as features to the nodes
g1, g2, g3, and g4 in the dependency graph G’. By augmenting G’
with the embedding vectors we can use a second-level GNN we call
the circuitGNN to produce more accurate circuit-level predictions
as shown in Figure 3(e).

SNS v2 leverages the strengths of HGNNs and domain-specific
knowledge of RTL circuits to provide an efficient and accurate
method for predicting synthesis results. By incorporating data
dependencies and taking advantage of the hierarchical nature of
RTL circuits, SNS v2 outperforms traditional end-to-end GNN ap-
proaches, especially when applied to large-scale circuit designs.

3.4 Pre-training of the SubgraphGNN
Data scarcity presents a significant challenge in applying deep learn-
ing models to hardware design. High-quality open-source hardware
designs are rare, and even when available, pre-processing, synthe-
sizing, and implementing the designs using specific technology
libraries require substantial computational resources and human
effort.

To address this challenge, SNS v2 leverages abundant unlabeled
data to enhance model performance through pre-training. Effective
pre-training often depends on domain-specific hypotheses about
input data, as seen in the groundbreaking Word2Vec technique [19]
used in natural language processing. This technique is based on the
assumption that words appearing in similar contexts tend to share
similar meanings. This hypothesis, often called a domain-specific
distributional hypothesis, allows Word2Vec to train a model that
represents words as high-dimensional vectors that capture their
semantic and grammatical relationships.

The primary innovation of SNS v2 lies in exploiting a domain-
specific distributional hypothesis that functionally equivalent cir-
cuits can be represented with similar embedding vectors. EDA
tools and hardware compilers offer insights for formulating a dis-
tributional hypothesis. An essential step in the design compilation
process involves circuit optimization, which relies on a set of legal
transformations that convert a circuit into an equivalent, lower-cost
circuit. Two circuits are considered functionally equivalent if they
exhibit identical functional behavior but have different intermedi-
ate representations (i.e., different circuitIR graph structures). We
say that these two circuits are functionally equivalent.

If a model can generate similar representation vectors for two
functionally equivalent circuits – those vectors being continuous,
fixed-size representations that capture the essential features and
properties of the circuits – the model can learn how compilers
and EDA tools optimize circuits and identify equivalent circuits
despite differences in their circuitIR structures. By contrast, if the
model generates different representation vectors for two inequiva-
lent circuits, it becomes more robust to noise and can focus more
directly on circuit functionality, which results in improved perfor-
mance and generalization. This observation can be formalized as
the distributional hypothesis for pre-training SNS v2: if two circuits
are functionally equivalent, modern synthesis tools can optimize them
into similar cost forms with high probability.
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Figure 4: Contrastive pre-training for SNS v2: The model
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embeddings of functionally equivalent circuits while max-
imizing the distance between the subgraph embeddings of
inequivalent circuits.

To pre-train SNS v2 using the formulated distributional hypoth-
esis using unlabeled data, we employ a self-supervised learning
technique called contrastive learning. Contrastive learning trains a
neural network to learn input data representation by contrasting
positive and negative examples. By maximizing the similarity be-
tween positive examples while minimizing the similarity between
negative examples, contrastive learning compels the network to
differentiate between two similar inputs from different classes. This
technique has been widely adopted in both natural language pro-
cessing and computer vision.

In the SNS v2 model, we apply contrastive pre-training to the
first-level subgraphGNN model (described in Section 3.2). Rather
than fitting the model with a known label, the training objective
is to minimize the distance between the subgraph embeddings of
functionally equivalent circuits and maximize the distance between
the subgraph embeddings of inequivalent circuits. As illustrated
in Figure 4, subgraphs g1 and g2 are not functionally equivalent
because g1 performs an add operation while g2 performs a mul
operation. The model will maximize the distance between these
two subgraph sample embeddings using contrastive learning. Con-
versely, subgraphs g2 and g3 do not have similar graph structures
but are actually functionally equivalent, as the two not operations
in g3 cancel each other out, forming a circuit that is equivalent to g2.
Hence, we seek to minimize the distance between their subgraph
embeddings.

Using the contrastive pre-training technique in our model, we
can achieve two critical benefits. First, we can learn a represen-
tation that is invariant to legal transformations, which can help
to further improve the model’s robustness to noise and variability
in the data. Second, since contrastive learning is a self-supervised
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Table 1: Designs Collected

Category Examples Amount

GP. Core RocketCore [2], BoomCore [42], 20XiangShan (Nanhu and Yanqihu) [30, 38]
SoC 4xRocket Soc 4
NoC RingBus [41], MeshBus 16
Mem/IO OpenHMC [25], AXI-4 Controller [1] 6
DSP FFT [1], StreamingFIR [1] 8
Vector/Neural Accel. Gemmini [7], VTA [20], Hwacha [24] 6
Crypto Core AES, Sha3 3

Arithmetic FPU (from hardfloat [2] and fudian [38]), 16SPMV [23], Gemm
Miscellaneous LookupTable, BFS 10

Total: 89

technique, it enables us to train on unlabeled data, which is par-
ticularly important given the scarcity of labeled hardware design
data.

3.5 Fine-tuning of the CircuitGNN
After the pre-training of the subgraphGNN model, the sampled
subgraphs are encoded into embedding vectors. Once we have the
embeddings, we construct a dependency graph that captures the
data dependencies between the subgraphs via register dependen-
cies. The dependency graph along with the embeddings are fed into
the second-level circuitGNN model to predict hardware synthesis
results. To ensure rapid inference speed, we employ simple graph
convolutional network (GCN) layers [14] for hardware synthesis re-
sult prediction. For more information on the data collection method,
neural network model implementation, and training process, please
refer to Sections 4 and 5.

4 DATASET COLLECTION
In this section, we detail how we generate the datasets to pre-
train and fine-tune our two-level HGNN model as well as what the
datasets entail.

4.1 RTL Synthesis Dataset Generation
We start our data collection process by first collecting available
open-source hardware designs and generating the “ground truths”
by completing the synthesis tool flow using the industry standard
Synopsys Design Compiler [26]. In addition to collecting open-
source designs, we implement other popular designs and include
them in the dataset. Table 1 lists the designs that are included. We
use three technology libraries: Synopsys SAED-90nm, SAED-32nm,
and SAED-14nm [8], and set various synthesis parameters (e.g.,
clock period, threshold voltage, temperature) and process corners.
We create three synthesis configurations per library: fast, typical,
and slow. The fast configuration enforces tight timing constraints,
the lowest threshold voltage and temperature, and optimal process
corners to obtain the fastest and most optimal result. Conversely,
the slow configuration utilizes loose timing constraints, the highest
threshold voltage and temperature, and the worst-case process cor-
ners. The typical configuration falls between the two. The generated
synthesis results are used as the labels for our circuit-level dataset
(Figure 5(a)). Note that the datasets generated using the 90nm and
14nm technology libraries are only used to assess SNS v2’s predic-
tion accuracy, as the HGNN are pre-trained and fine-tuned using
only the 32nm dataset.
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Figure 5: Dataset Generation Flow Chart. “C. G. Compiler”
refers to the circuit graph compiler discussed in Section 3.1.
Three datasets are generated for SNS v2: (a) the circuit-level
dataset, (c) the subgraph pre-training dataset, and (b) the
subgraph fine-tuning dataset.

To ensure fairness during testing, we divided our designs into
training and test sets using a 7:3 ratio. We also imposed a restric-
tion that any design in the test set could not be a submodule of
any design in the training set and vice versa. For example, if the
RocketCore design appears in a training set, the 4×RocketCore
SoC design cannot be in the test set.

4.2 SubgraphGNN Dataset Generation
With all the designs collected, we generate the pre-training dataset
and the fine-tuning dataset for the subgraphGNN by compiling the
collected hardware designs into circuitIR and sample subgraphs
from the designs. These subgraphs are all sampled from the training
set of the circuit-level dataset so that the evaluation remains fair
(i.e., no information leakage from the training set to the test set).

To enable contrastive learning, we need to create a contrastive
dataset (i.e., the pre-training dataset) consisting of functionally
equivalent circuitIR samples. As described in Section 3.4, we per-
form contrastive pre-training on the subgraph model, and therefore,
we generate the contrastive dataset for the sampled subgraphs by
creating "mutations" of each subgraph that are functionally equiv-
alent. We identify a set of commonly used legal transformations
in EDA tools and hardware compilers, randomly select a trans-
formation from the list of legal transformations 1, and apply the
transformation to the circuit. We set a parameter 𝑘 such that a ran-
dom transformation is selected and applied to the circuit 𝑘 times.
The larger the 𝑘 , the more transformations are applied, and the
more significant the mutation of the original circuit. We run this
algorithm multiple times to generate a set of functionally equiv-
alent circuits for each subgraph. In practice, we set 𝑘 = 3 and

1We implemented the following transformations: Common Subexpression Elimination,
Constant Folding and Propagation, De-Morgan’s Law, Associative Law, Commutative
Law, Dead Code Elimination, Mux Tree Re-ordering, Boolean Logic Optimization,
Reduction Consolidation, Equivalent Comparison, and Shift to Multiplication.
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Table 2: Model Architecture and Training Hyperparameters

First-Level subgraphGNN Second-Level circuitGNN
Training Phase Pre-Training Fine-Tuning Domain-Adaptation
#GCN Layers 3 3
Hidden Dim 256 128
Batchsize 128 64 2
Optimizer Adam [13] Adam Lion [4]
LR 1e-5 1e-4 5e-4
Dataset Size 24576 4096 58
#Epochs 10 100 400
Training Time 4 (h) 2.1 (h) 0.4 (h)

generated five new functionally equivalent circuits for each sub-
graph2. In total, we sampled 4096 subgraphs and constructed 20480
functionally equivalent sets as our pre-training dataset for the sub-
graphGNN. This dataset is depicted in Figure 5(c) where subgraph
g1 has corresponding equivalent mutations g1’, g1’’, and so on.

After pre-training, the subgraphGNN is fined-tuned with labeled
data, and therefore needs “ground-truths” by obtaining synthesis
results via Synopsys DC. Though we’ve generated synthesis results
for the circuit-level dataset, the results are for entire hardware de-
signs and not for subgraphs. Recall that our circuit graph compiler
has the capability to convert the sampled graph intermediate repre-
sentation circuitIR back to FIRRTL, allowing the FIRRTL compiler
to reconstruct HDL codes that are synthesizable. The subgraph
HDLs are then synthesized using Synopsys DC to generate labeled
synthesis data (i.e., timing, area, and power). This process of gen-
erating the fine-tuning dataset and the dataset itself are depicted
in Figure 5(b) and the dataset sizes are listed in Table 2. Our re-
sults show that SNS v2 achieves high accuracy even with a small
domain-adaptation dataset.

5 MODEL TRAINING AND EVALUATION
5.1 Methodology
To train our models, we implemented neural network architectures
using the PyTorch library with GCN layers imported from the DGL
Library [31]. The PyTorch Lightning framework coordinated the
training methodology, while a single Nvidia A5000 GPU powered
the training of all models. The selection of model hyperparameters,
optimizers, as well as training times of the three phases are listed
in Table 2.

5.2 Training of the subgraphGNN
Our first-level subgraphGNN is first pre-trained on an unlabeled
equivalent subgraph dataset, the pre-training dataset, in a con-
trastive fashion to obtain vector embeddings that represent func-
tionally equivalent circuits with similar vectors. The subgraphGNN
is then fine-tuned using the labeled fine-tuning dataset with real
synthesis results.

During the contrastive pre-training phase, we use a triplet train-
ing method where for each step, we perform the following: 1) ran-
domly sample an anchor subgraph 𝐺𝑎 , 2) randomly sample a posi-
tive sample𝐺𝑝 from𝐺𝑎 ’s equivalent set, and 3) randomly sample a
negative sample 𝐺𝑛 from a set that is not in the same equivalent
set as 𝐺𝑎 and therefore is not functionally equivalent to 𝐺𝑎 . For
2We ran experiments using k=2, 3, 4, and 5 and empirically chose k=3 because it
achieved the lowest contrastive training loss and facilitated a fast convergence of the
first-level GNN model. The detailed training procedure is discussed in Section 5.

example, if we use subgraph g1 as an anchor, then any mutation
of g1 can be a positive sample (e.g., g1’), and any other subgraph
that is not in the g1 equivalent set can be a negative sample.

The objective is to minimize the triplet loss function [10]:
L𝑡𝑟𝑖𝑝𝑙𝑒𝑡 = max(0, | | ®𝐸𝑎 − ®𝐸𝑝𝑜𝑠 | | − | | ®𝐸𝑎 − ®𝐸𝑛𝑒𝑔 | | +𝑚). In this process,
we contrast the embedding of the anchor subgraph 𝐺𝑎 with the
embedding of the positive sample 𝐺𝑝 and the embedding of the
negative sample 𝐺𝑛 . We want to minimize the distance between
the anchor and positive sample representation in the latent space,
while simultaneously maximizing the distance between the anchor
and negative sample representation. This approach effectively en-
courages the learning of meaningful and discriminative features
that distinguish between functionally inequivalent circuits.

Following the pre-training phase, we fine-tune the subgraphGNN
using actual synthesis results from the EDA tools, specifically the
Synopsys Design Compiler. This process begins with the checkpoint
of the pre-trained model and the model is trained on the fine-tuning
dataset with the object of minimizing the MAPE (Mean Absolute
Percentage Error) loss function:𝑀𝐴𝑃𝐸 = 100

𝑛

∑𝑛
𝑡=1

��� 𝑦−𝑦̂𝑦 ��� . After the
fine-tuning phase, the first-level subgraphGNN is able to produce
better embeddings of the circuit with the synthesis result knowledge
baked in.

5.3 Training of the circuitGNN
SNS v2’s first-level subgraphGNN is capable of encoding any circuit
subgraph into a representation vector that captures its structural,
functional, and physical characteristics such as power, area, and
timing. Using this vector, the second-level circuitGNN is trained on
the circuit-level dataset which includes both the circuit subgraph
representation vectors and the synthesis results of the hardware
designs as the labels. We also use the minimization of the MAPE
loss function as the training objective.

We fine-tune the circuitGNN exclusively on the 32nm typical
target, and the results are presented in Figure 6-middle-left, labeled
as ’*’, and in Figure 7 where we compare the predicted results of
SNS v2 vs. the ground-truth results. To show the effectiveness of
the three-phase training process, we also train a baseline GNN
model (similar to the one depicted in Figure 2(e)) that directly
predicts the synthesis results from the hardware design circuit
graph. The baseline model’s accuracy is plotted in Figure 6-middle-
left, labeled as ’Baseline’. We observe that SNS v2 achieves a much
better accuracy than the baseline model, which demonstrates the
effectiveness of the three-phase training process.

5.4 SNS v2 Domain Adaptation
To demonstrate the model’s adaptability and generalization capa-
bilities across various technology nodes, we predict designs im-
plemented on other technology nodes through a transfer learning
approach. Once SNS v2 is fine-tuned on one target technology node
and one synthesis configuration with labeled data (in our case,
32nm typical), it can be adapted to other technology nodes and
operating conditions with just a few labeled data samples. In our
experiments, we used exactly one design to generate the dataset
for domain-adaptation of other technology nodes and operating
conditions. For example, to predict a hardware design in 14nm fast,
we will use the actual synthesis results of a RocketCore (and its
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Figure 6: SNS v2 Synthesis Prediction Accuracy for both In-
domain and Out-domain targets. 32nm typical is fine-tuned
with the training set, which is labeled ‘*’ in the figure. The
baseline result is for an end-to-end model that directly pre-
dicts the synthesis result from the circuit graph. Other results
are for the transfer learning approach, where the circuitGNN
is fine-tuned on the 32nm typical target and then adapted to
other technology libraries and synthesis corners with one
data sample of a RocketCore (R.), a BoomCore (B.), or an SoC
of BoomCore+Hwacha (B.+H.).
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Figure 7: The scatter plot shows SNS v2’spredicted results
vs. Synopsys Design Compiler’s ground-truth results for the
32nm typical target.

subgraphs) implemented using the 14nm technology library and
a fast operating condition to perform domain-adaptation. The
results are shown in Figure 6-top-right, labelled ’R.’.
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Figure 8: The distribution of the timing prediction’s Abso-
lute Error Percentage (APE) when transferring from the
32nm typical to 14nm typical for three different domain-
adaptation datasets: Rocket, Boom, and Boom+Hwacha. The
error percentages are evaluated against the ground-truth
synthesis result of each prediction target respectively (e.g.,
32nm’s prediction result is evaluated against the 32nm’s
ground-truth synthesis result while the 14nm’s prediction
is evaluated against the 14nm’s synthesis result). Each bar
represents the number of predictions that fall into the cor-
responding error percentage range (e.g., the leftmost bar in
the leftmost figure for the 32nm’s prediction error indicates
that there are 11 designs whose absolute prediction errors
are within the range of 0-10%). Themean absolute percentage
error (MAPE) for each distribution is annotated above the
distribution bars. The figure on the right shows SNS [37]’s
MAPE results (A: Area, P: Power, T: Timing). SNS v2 is able
to achieve much better accuracy than SNS.

In our experiments, we consider three distinct domain adaptation
datasets, each containing one design, covering a range of design
sizes: a RocketCore (R.), a BOOMCore (B.), and a BOOMSoC with
the Hwacha Vector Core (B.+H.). We performed domain adaptation
across the 14nm, 32nm, and 90nm libraries, covering three unique
synthesis corners – typical, slow, and fast, except for the 32nm
typical corner, which served as our fine-tuning base.

Based on the outcomes, we can draw several conclusions: First,
the performance of domain adaptation improves as the size of the
fine-tuning dataset increases. While SNS v2 demonstrates satis-
factory accuracy even with a small design like the RocketCore, it
suggests that the model benefits from larger datasets during the
domain-adaptation phase. This observation is further supported
by Figure 8, which depicts the distribution of error percentages
for the domain adaptation process in the timing prediction for the
14nm typical corner. Upon examining the error rates of using
the smaller RocketCore design to the larger out-of-order BOOM-
Core, and an even larger BOOMSoC+Hwacha design, we noticed
a substantial improvement in model accuracy (MAPE went from
26% to 21%), highlighting the model’s ability to capitalize on larger
datasets for enhanced performance.

Second, we found that the 90nm library exhibits poorer domain-
adaptation performance than the 14nm library. This may be attrib-
uted to significant differences between the cell modeling techniques
used in the 90nm library differ greatly from those in the 14nm and
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Figure 9: SNS v2 Speedup w.r.t. Synopsys Design Compiler

32nm libraries, the 90nm technology library uses NLDM (Non Lin-
ear Delay Model) model while both the 32nm and 14nm library
relies on modern CCS (Composite Current Source) model. In reality,
a MAPE as large as 67% means that the predicted result is expected
to have an error of ±67% compared to the ground truth. At this level
of accuracy, high-quality design space exploration results cannot
be guaranteed by SNS v2 . The user would need to further tune the
SNS v2 model with a larger domain-adaptation dataset to improve
accuracy.

Third, predicting power proves to be generally more challenging
than predicting timing and area due to the accumulation of error
in power and area predictions. This is because power is a function
of both a circuit design’s timing and area.

5.5 Performance of SNS v2
SNS v2 achieves an average speedup of 411.2× over Synopsys De-
sign Compiler. Figure 9 plots the designs we evaluated and the
SNS v2 runtime when predicting the physical characteristics of
the designs. Majority of the designs achieved at least two to three
orders of magnitude speedup when predicted with SNS v2 over
conventional Synopsys DC. It’s worth noting that the profiling for
both SNS v2 and Synopsys DC was conducted on the same medium-
sized server equipped with dual Xeon Gold 6252 CPUs and 512GB
DDR4 Memory, without any GPU utilization for neural network
inference, to ensure a fair comparison with Synopsys DC, which
only runs on CPUs.

5.6 Comparison with SNS
Though the original SNS can achieve up to three orders of magni-
tude speedup compared to conventional EDA tools, SNS v2 achieves
much better prediction accuracy than SNS (e.g., SNS v2’s timing
MAPE of 17.37% vs. SNS’s MAPE of 61.46% as shown in Figure 8),
provides transfer learning capability (i.e., using 32nm dataset to
predict 14nm designs), and employs contrastive learning to im-
prove its robustness using abundant unlabeled data. Although SNS
provides a greater speedup on average (574×), SNS v2 provides sig-
nificant advantage over SNS due to its better prediction accuracy,
transferability, and robustness.
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Figure 10: Neural and Hardware Architecture Search Space:
(a) shows a sample from the neural architecture search space.
(b) depicts the hardware architecture search space where
we assign a type of neural accelerator core to each layer in
the neural architecture and all the cores share a common
scratchpad memory.

6 CASE STUDY
Neural Architecture Search (NAS) is a technique for automated
designing of neural networks [6]. Optimizing neural network ar-
chitectures for hardware implementation is crucial for resource-
constrained environments such as edge devices. This is where hard-
ware Neural Architecture Search (hNAS) comes in. By incorporating
hardware constraints, hNAS generates efficient and effective neural
network architectures for an optimal hardware implementation.

In this case study, we demonstrate the integration of SNS v2 into
a neural accelerator generator to provide real-time feedback for
improved hardware generation quality. We perform hNAS, where
we search for the optimal neural network architecture and hardware
configuration for an image classification task based on cost.

6.1 Neural Architecture Search Space
To search for the optimal neural network architecture, we utilize
the NASBench101 dataset [39] as our search space. This dataset is
comprised of 423,000 unique neural networks with varying architec-
tures and hyperparameters, with each trained and evaluated on the
CIFAR-10 dataset [16], recording both test and training accuracies.

The search space defined in NASBench101 is concentrated on
small feedforward structures called cells, represented as DAGs with
a maximum of 7 vertices and 3 possible operations: 3×3 convolu-
tion, 1×1 convolution, and 3×3 max-pool. Constraints within the
search space limit the number of vertices to 7, the number of edges
to 9; only batch normalization with ReLU activation is supported.
This search space enables the exploration of ResNet-like [11] and
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Inception-like [27] cells while maintaining tractability. Figure 10(a)
depicts an example of a neural network architecture cell in the NAS-
Bench101 dataset. For this case study, we will be generating these
cells via NAS and evaluating different hardware implementations
of these cells via hNAS.

6.2 Hardware Architecture Search Space
We define our hardware architecture search space as a cluster of het-
erogeneous neural accelerator cores connected to a shared scratch-
pad memory as shown in Figure 10(b). For each layer in the neural
network, we assign a dedicated neural accelerator core. We restrict
each core to perform computations solely for its corresponding
neural layer. To simplify our experiment, we make the assump-
tion that the shared scratchpad memory is large enough to hold
all required intermediate results, and all communications between
neural accelerator cores occur through the scratchpad memory. The
modeling of the scratchpad memory itself is beyond the scope of
the SNS v2 model and will not be included in this case study.

The search space for one core in the cluster is defined through a
simplified dataflow taxonomy proposed by the MAESTRO frame-
work [17]. MAESTRO classifies neural network accelerators based
on how the input and weight to each neural layer is multicasted and
how the multiplication results are reduced to a single value. These
implementations are categorized into three different dataflows: tem-
poral, spatial, and spatial-temporal. A temporal multicast requires a
data element to be latched in a register, which can be accessed over
multiple cycles. A spatial multicast broadcasts data to all processing
elements (PEs) in a single cycle with a direct fan-out. The spatial-
temporal dataflow combines both spatial and temporal dataflows
by allowing one piece of data to hop from one PE to another each
cycle.

To produce the most common types of neural accelerator cores
based on this taxonomy, we implemented four types of accelerator
cores: vector machine, fused arithmetic, weight stationary, and out-
put stationary as shown in Figure 10(b). We developed a vector core,
a fused core, and a systolic array generator in Chisel [3], supporting
these four types of neural accelerator cores with the number of PEs
being 16, 64, 256, or 1024. Systolic arrays are constructed in square
shapes (e.g., 16 PEs corresponds to a 4×4 systolic array) while the
number of PEs corresponds to the number of multipliers for the
vector core and the fused core. Our performance model in Python
accurately produces cycle counts for each type of neural accelerator
core with a specific number of PEs for a given neural network layer.

6.3 Search Results and Evaluation
To conduct a hardware neural architecture search, we must define
a specific optimization objective for the search problem. In our case
study, we aim to minimize the cost per inference regularized with
the neural network’s accuracy. The regularization is necessary as
we want to reward the search algorithm to find a network that’s
both low-cost and high-accuracy 3. We aim to search for both the

3We make the following assumptions: (1) Average electricity price: 0.2/𝑘𝑊ℎ. (2)
Chip fabrication costs: 0.05/𝑚𝑚2 for 32nm. (3) We regularize the cost based on the
network’s accuracy through a regularization factor 𝜎 = (0.9) (accuracy−0.9)/0.01 . (4) A
chip lasts 5 years before obsolescence and operates under full load for 40% of that time.
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Figure 11: SNS v2 vs. Synopsys Design Compiler for Provid-
ing Guidance for Hardware Generator in Hardware Neural
Architecture Search. While SNS v2 predicts the synthesis re-
sult, there may be some errors in the prediction. To ensure
a fair comparison, the search result of the SNS v2 model is
evaluated by synthesizing the hardware architecture gener-
ated using the Synopsys Design Compiler at the end. The
final evaluation result is depicted as dots on the right side of
the figure.

optimal neural architecture and the optimal hardware architecture
that supports it.

We implement two search algorithms for our case study: Random
Search and Evolutionary Search. The Random Search algorithm
first randomly samples a neural architecture from the search space,
and is followed by randomly sampling a hardware architecture for
that neural architecture. The Evolutionary Search algorithm starts
with a population of randomly sampled neural architectures and
hardware architectures, and then iteratively updates the population
by applying mutations over the population. The mutations involve
changing both the neural architecture and the hardware architec-
ture. The neural architecture mutations involve adding or removing
edges or nodes from the computation graph, effectively transform-
ing the neural network topology. In contrast, hardware architecture
mutations involve adjusting the number of PEs and the dataflow
type. By altering these parameters, the algorithm strives to optimize
the hardware’s efficiency and throughput, catering to the specific
demands of the neural architecture and the target application.

We perform the two types of searches for fixed wall-clock time
periods using both SNS v2 and Synopsys DC and compare the cost
per inference as the search converges shown in Figure 11. We ob-
serve that the Evolutionary Search algorithm not only converges
much faster than the Random Search algorithm, but also produces
better results. Furthermore, our SNS v2 model outperforms Synop-
sys DC in both speed and quality. In just 2 minutes, SNS v2 finds
a solution that is an order of magnitude better than the Synopsys
DC solution, which takes 4 hours to discover. This significant im-
provement in speed and quality has substantial benefits for complex
large-scale hardware generators, as it enables real-time design de-
cisions based on the hardware cost feedback provided by SNS v2
.
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Model Input Prediction Target Transferability Scalability Arbitrary Design
Aladdin [15] Aladdin DSL Power, Performance Not ML based No limit No
MAESTRO [17] NPU Specs Power, Performance No No limit No
GRANNITE [40] Netlist w. Traces Dynamic Power No mini-RISC-V Core Yes
ECO-GNN [18] Netlist w. Traces Dynamic Power Across workloads RocketCore Yes
D-SAGE [29] HLS Timing, Routability No Micro-kernels No
SNS [37] RTL Power, Area, Timing No RISC-V SoC Yes
SNS v2 RTL Power, Area, Timing Across TechLibs RISC-V SoC Yes

Table 3: Comparing SNS v2 with related work. The scalability column shows the largest design size in the model’s test set.

7 RELATEDWORKS
In this section, we provide a comparison of our work and other
related works. We summarize them qualitatively in Table 3.

7.1 Pre-RTL Hardware Cost Estimators
Pre-RTL hardware cost estimators like Aladdin [15] allow for quick
hardware cost estimation without having the RTL code ready. How-
ever, these estimators suffer from limited scope and accuracy due
to lost of implementation details. To maintain accuracy, pre-RTL
models impose constraints on input domains. The scope of these es-
timators is also limited to specific domains, such as neural network
accelerators. The Aladdin framework is limited to accelerators con-
forming to the SoC system defined by the framework. In contrast,
SNS v2 can predict hardware cost for any arbitrary RTL hardware
designs.

7.2 GNN Predictors for Hardware Designs
GNNs are used to predict hardware design characteristics, such as
timing delays and power consumption. D-SAGE is a GNN-based
model that predicts timing delays and routability on FPGAs using
graph structures learned from HLS code. GRANNITE [40] and ECO-
GNN [18] are GNN-based models that predict power consumption
based on graph representations, with GRANNITE demonstrating
speed advantages but scaling poorly with input size, while ECO-
GNN uses a subgraph approximation technique to reduce training
and inference costs. SNS v2 adopts a similar GNN-based model
inspired by D-SAGE but uses a hierarchical approach to training
and inference for large designs in order to provide scalability.

8 CONCLUSION
In this paper, we presented SNS v2, a fast, robust, and transfer-
able hardware synthesis predictor based on deep learning models.
By utilizing equivalent pre-training and a three-phase training
approach, SNS v2 achieves state-of-the-art accuracy and transfer-
ability compared to other works. Furthermore, we demonstrate
the applicability of SNS v2 within a neural accelerator generator
framework. In this context, SNS v2 provides real-time guidance
for design space exploration, resulting in both faster speeds and
improved quality of results compared to conventional EDA tools.
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