SNS’s not a Synthesizer: A Deep-Learning-Based Synthesis

Predictor
Ceyu Xu Chris Kjellqvist Lisa Wu Wills
ceyu.xu@duke.edu christopher.kjellgvist@duke.edu lisa@cs.duke.edu
Duke University Duke University Duke University
Durham, North Carolina, USA Durham, North Carolina, USA Durham, North Carolina, USA

ABSTRACT

The number of transistors that can fit on one monolithic chip has
reached billions to tens of billions in this decade thanks to Moore’s
Law. With the advancement of every technology generation, the
transistor counts per chip grow at a pace that brings about exponen-
tial increase in design time, including the synthesis process used to
perform design space explorations. Such a long delay in obtaining
synthesis results hinders an efficient chip development process, sig-
nificantly impacting time-to-market. In addition, these large-scale
integrated circuits tend to have larger and higher-dimension design
spaces to explore, making it prohibitively expensive to obtain physi-
cal characteristics of all possible designs using traditional synthesis
tools.

In this work, we propose a deep-learning-based synthesis pre-
dictor called SNS (SNS’s not a Synthesizer), that predicts the area,
power, and timing physical characteristics of a broad range of de-
signs at two to three orders of magnitude faster than the Synopsys
Design Compiler while providing on average a 0.4998 RRSE (root
relative square error). We further evaluate SNS via two representa-
tive case studies, a general-purpose out-of-order CPU case study
using RISC-V Boom open-source design and an accelerator case
study using an in-house Chisel implementation of DianNao, to
demonstrate the capabilities and validity of SNS.

CCS CONCEPTS

» Hardware — Integrated circuits; High-level and register-
transfer level synthesis; « Computing methodologies — Neu-
ral networks.

KEYWORDS
Integrated Circuits, RTL-level Synthesis, Neural Networks

ACM Reference Format:

Ceyu Xu, Chris Kjellgvist, and Lisa Wu Wills. 2022. SNS’s not a Synthe-
sizer: A Deep-Learning-Based Synthesis Predictor. In The 49th Annual
International Symposium on Computer Architecture (ISCA 22), June 18-
22, 2022, New York, NY, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3470496.3527444

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISCA 22, June 18-22, 2022, New York, NY, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8610-4/22/06...$15.00
https://doi.org/10.1145/3470496.3527444

847

1 INTRODUCTION

Accelerators face friction when being adopted by industry in a
large scale. With emerging applications introducing different types
and demands for computations over time, accelerators are sought
after to meet these new computation demands. Unlike general
purpose processors that are programmable, accelerators sacrifice
generality for specificity to offer unmatched performance and effi-
ciency. General-purpose processors can still accommodate the shift
of computation demands as programs old and new can run without
modifications. On the other hand, even though accelerators can
provide two to three orders better efficiency processing emerging
workloads, they are time-consuming to develop and difficult to
program. The only way accelerators can keep up with the ever-
changing computation demands is by having a fast development
process and a relatively short design iteration cycle.

Specialized hardware are difficult to develop and optimize. Un-
like software which can be modified, compiled, and tested quickly
and easily, one major challenge that forbids the expedition and
the simplification of accelerator development is its long feedback
delay while waiting for synthesis results. In our experience, even
synthesizing a 32X32 systolic array that supports bfloat16 input
datatype and float32 accumulation with an area around 2.5mm?
takes up to one day using the traditional synthesis toolchain such as
the Synopsys Design Compiler [14]. With modern computer chips
having areas (and design complexities) reaching hundreds or even
thousands of mm? (e.g., NVIDIA A100 GPU at 826mm? [31], AMD
Epyc Rome at 1000mm? [29]), the problem of long design iteration
cycles exacerbates.

To solve this problem, the computer chip industry came up with
two solutions: adopting a modular hardware design methodology
and/or employing experienced hardware developers. By design-
ing hardware in a modular fashion, each module can be smaller
and takes less time to synthesize. The delay of knowing the syn-
thesis results, though still painfully long, becomes more tolerable.
Experienced hardware developers usually have enough hardware
design knowledge to make a good guesstimate of the physical char-
acteristics (e.g., cycle time) of the hardware blocks being developed.
They do not need to solely rely on synthesis feedback at every step
throughout the development process.

However, neither of these solutions solve the long synthesis
runtime problem. In addition, they lead to other shortcomings in
the design process. Utilizing the modular design methodology in-
troduces the possibility that the developers lack a holistic view of
the entire design and may design modules that are locally optimal
but not globally optimal, compromising the quality of the design.
Human experiences are not always reliable, especially when new

https://orcid.org/0000-0002-2668-6456
https://orcid.org/0000-0002-4792-1910
https://orcid.org/0000-0002-3574-3440
https://doi.org/10.1145/3470496.3527444
https://doi.org/10.1145/3470496.3527444
https://doi.org/10.1145/3470496.3527444

ISCA 22, June 18-22, 2022, New York, NY, USA

fabrication technologies emerge. With these new technologies, dif-
ferent components may exhibit very different scaling behaviors,
and hardware design experiences might even be harmful when the
guesstimates are wildly incorrect under certain circumstances.

In this work, we present a deep-learning-based synthesis predic-
tor called SNS that not only makes more accurate area, power, and
timing predictions than prior work and also runs at two to three
orders of magnitude faster than traditional synthesis tools.

Leveraging recent advances in artificial intelligence and graph
analytics, SNS turns input designs into graph representations for
synthesis predictions. Inspired by the path-based approach for so-
cial network analysis [24], SNS takes a novel circuit-path-based
approach to predict the physical characteristics of individual circuit
paths and aggregating the paths’ characteristics to predict the area,
power, and timing of the entire input design. Leveraging sequence
processing techniques that learns the order and the placement of
words in relation to a sentence such as natural language process-
ing [36], SNS learns the order and the placement of functional units
in a circuit path to provide more accurate synthesis result predic-
tions. With very limited number of open-source hardware designs
available as training data, SNS utilizes generative models [41] to gen-
erate training datasets, providing accurate predictions even when
training data is scarce.

This paper makes the following contributions:

e An ultrafast and accurate (more accurate than D-SAGE [32])
synthesis predictor called SNS. SNS predicts the area, power,
and timing of arbitrary input designs in seconds per design
(on average 760X faster than the Synopsys Design Compiler
for the designs we experimented) for design sizes and com-
plexities ranging from a 128-entry 8-bit lookup table to a
16-core accelerator that computes single precision floating
point 2D stencils.

e An augmented, light-weight Transformer model called Cir-
cuitformer that accurately predicts the physical characteris-
tics of circuit paths.

e A 4000+ circuit paths training dataset for the Circuitformer
that is generated using a Depth-First-Search-based random
sampling algorithm along with a Markov Chain and a Gen-
erative Adversarial Network for sequences [41].

e Two case studies to demonstrate the capability, scalability,
and validity of SNS: 1) a design space exploration based
on a general-purpose out-of-order RISC-V processor core
BOOM [43] to select three designs out of 2500+ designs on
the Pareto frontier, and 2) a synthesis results comparison,
a design space exploration, and a tradeoff study between
datatype and model accuracy based on a classic machine
learning accelerator DianNao [6].

2 BACKGROUND AND MOTIVATION

Machine learning (ML) models have shown their capability in fields
such as image classification and natural language processing. Now
computer architects too are beginning to consider how they might
use ML to design chips. A variety of ML models have been proposed
to predict different results of the chip design process. D-SAGE [32]
proposed a custom GraphSage model for predicting the operation
delay in an High-Level Synthesis (HLS) design. GRANNITE [42]

848

Ceyu Xu, Chris Kjellqvist, and Lisa Wu Wills

uses a Graph Convolutional Network (GCN) model to predict the
runtime power of a circuit design. PowerNet [38] proposed a Con-
volutional Neural Network (CNN) model for predicting the runtime
voltage drop of a design. More traditional models have also been
used. For example, Pyramid [22] used an ensemble of traditional ML
models including Random Forest, Support Vector Machine (SVM),
and Linear Regression to predict the resource usage of an HLS
design on an FPGA.

Among these models, the Graph Neural Networks (GNN) models
(GraphSage and GCN) stand out from other models because of their
accuracy and elegance when performing circuit analysis. Hardware
circuits are essentially graphs where the circuit’s functional mod-
ules correspond to vertices and the wiring connections between
them correspond to edges, making GNNs an obvious choice for
performing circuit analysis.

But while they are elegant, they scale poorly for inference in
large circuit graphs. Each layer of a GNN creates a graph embedding
that incorporates the state of a node and its direct neighbors. In
practice, circuit paths may be hundreds of nodes deep so a GNN
capable of performing inference on full paths will also be hundreds
of layers deep. Computing the gradient of a GNN with K layers
requires storing the entire Kth-order neighborhood in memory,
making the training process require an unreasonable amount of
resouces. Further, while GNNs successfully perform inference for
global graph properties, they are poor at inferring local properties
of a graph; both of which are needed for circuit inference. For
example, although being only a small portion of the design, the
critical path determines the timing for the design and therefore
affects the entire design’s power. As a result, GNNs are impractical
for performing inference on large-scale circuits.

2.1 Objective of SNS

As its name suggests, SNS is not a synthesizer and is neither meant
to produce the most accurate synthesis result nor provide gate-level
synthesized net-lists. SNS aims to reduce the delay of obtaining syn-
thesis results and make high dimensional design space explorations
feasible. These goals can be achieved with SNS’s fast inference but
are impossible if we cannot resolve the underlying model’s reliance
on large datasets for training. Therefore, we explore possible ways
of training SNS with extremely scarce data.

2.2 Novelty of SNS

SNS attempts to solve the challenges in existing prediction models
by taking an entirely different approach: SNS works on circuit
paths rather than working on the graph representation of the entire
design. Working on paths provides SNS with many advantages.
First, paths are faster and easier to process compared to graphs.
The maximum length of a circuit path is around 500, which takes
milliseconds to infer the properties of. This feature not only makes
SNS ultrafast (on average, 760X speedup over Synopsys DC), but it
also enables SNS to work on extremely large designs. Our results
show that SNS scales perfectly to designs up to the size of 18 million
gates (approximately 67.8 million transistors) !. Second, working

The gate count and transistor count numbers are obtained from Yosys gate-level
synthesis.

SNS’s not a Synthesizer: A Deep-Learning-Based Synthesis Predictor

@ Preprocessor
1

Input designs .| GraphlIR |
(*.v, *.sv, *.vhd) Yosys "| Generator
Gircuit-) Circuit paths Path
-
former Sampler

Physical characteristics

I:l Opensource Toolchain
y of circuit paths

Our contribution

Trainable
Deep Learning Model

Aggregation
MLP [

Graph Statistics

Predicted area, (e.g. #of adders)

power, and timing

Figure 1: SNS Prediction Flow

on paths allows SNS to infer "local properties” in the design, such
as the critical path.

Since SNS only works on one path at a time, it can make accurate
predictions for each path individually without interference from
adjacent, unrelated modules. Third, working on individual paths en-
ables SNS to trivially locate the critical path in the design. Knowing
both the length and location of the critical path are important for
improving the design. However, because GNNs perform inference
globally, the individual properties of paths are obfuscated, making
it hard to decide what path is chiefly responsible for an inference re-
sult. For SNS, since each path is explicitly sampled from the design,
a record is kept for where each path is located in the design. Lastly,
working on paths gives SNS the ability to use generative models
to augment the dataset, which is a very helpful feature when the
hardware design data is scarce.

3 THE DESIGN OF SNS: PATH-BASED
SYNTHESIS PREDICTOR USING NEURAL
NETWORKS

Modern machine learning models have found much success by
inspecting features of an input in context. For instance, to perform
imagine classification, Convolutional Neural Networks (CNNs) use
convolutional filters to extract high-level features from a grid of
pixels rather than looking at individual pixels. To analyze a social
network, Graph Convolutional Networks (GCNs) learn features of
all followers of an individual rather than focusing on the individual
alone. To perform natural language processing, Transformers [33]
use attention heads to extract a word’s relationship to other words
in the sentence, rather than trying to understand each word inde-
pendently. Inspired by these popular and successful deep learning
models, we propose SNS to predict physical characteristics of a
design by learning attributes (e.g., area, power, and timing) not just
from individual functional units (or individual nodes in a circuit
graph) but complete circuit paths that consist of all nodes along
those circuit paths. This allows SNS to first predict the physical
characteristics of one circuit path in a design and then gradually
aggregate the characteristics of multiple paths into design-level
physical characteristics, eventually predicting the area, power, and
timing of an input design in its entirety.

849

ISCA 22, June 18-22, 2022, New York, NY, USA

in1 in2

Multiplier

Paths [node1, node2, ...]
[i08, mul16, add16, dff16]

[dff16, out16]

Graph Statistics (node: count)
i08:2 mul16:1 dff16: 1
io16:1 add16:1

(©)

Figure 2: Transformation from Source Circuit to GraphIR
Representation with Path Information and Graph Statistics

Figure 1 depicts an overview of the SNS prediction flow. A typ-
ical flow consists of four steps: (D compile and convert an input
design into a graph intermediate representation (GraphIR) to rep-
resent circuits using the GraphIR Generator in the Preprocessor, (2)
sample complete circuit paths from the generated GraphIR using
the Path Sampler, 3 use a trained Transformer model we call Cir-
cuitformer to predict physical characteristics of sampled paths, and
@ aggregate the path-level physical characteristics using a multi-
layer perceptron neural network, Aggregation MLP, to predict area,
power, and timing of the input design. For the remaining of this
section, we describe in detail our design of SNS.

3.1 Turning Input Designs into Circuit Graphs

SNS takes input designs as circuits represented in the format of
commonly used Hardware Description Language (HDL) source
codes (i.e., system Verilog, Verilog HDL or VHDL). The first step
of the SNS prediction is to compile the input design source codes
and generate a graph intermediate representation of the circuit for
further analysis. This graph intermediate representation is referred
to as GraphlIR or circuit graph for the remaining of the paper. The
compilation is done using Yosys [34], an open-source synthesis
suite that contains a complete tool chain from compiling HDL
source codes to performing gate-level synthesis. SNS uses Yosys
only for parsing and compiling the input design source codes into
its circuit representation which includes all basic functional blocks
(e.g., multiplexers, adders, multipliers) and their wiring connections.

The circuit representation is then processed using a GraphIR
generator in the following manner. All input and output ports
(e.g., io) as well all functional blocks and units (e.g., mul, add) are
constructed as vertices (or nodes) in a circuit graph G = (V, E); let’s
denote the vertices as v € V. All connections between vertices are
constructed as directed edges in the graph. Besides using the type
of the nodes (e.g., io, mul, add) to differentiate vertices from one
another, SNS also utilizes the bit-widths of the wiring connections
(denoted as width) as another vertex property. Each node in the
graph is named using a concatenation of the type and the width. For
example, a 16-bit multiplier is represented as a vertex with the name
mul16. Figure 2 shows pictorially how an 8-bit multiply-add unit
from (a) is turned into a circuit graph in (b), having two 8-bit input
ports 108, a 16-bit multiplier mul16, a 16-bit adder add16, a 16-bit
register dff16 (df f stands for D-flip-flop), and a 16-bit output port
io16. The GraphIR generator also produces circuit graph statistics
(shown in (c)) such as the counts of each distinct node names. The

ISCA 22, June 18-22, 2022, New York, NY, USA

Table 1: GraphIR Vertex Embeddings

Vertex/Functional Unit type width

Input/Output port io 4,8,16,32, 64
D-Flip-Flop dff 4,8, 16, 32, 64
Multiplexer mux 4, 8,16, 32, 64
Bitwise NOT not 4,8, 16, 32, 64
Bitwise AND and 4,8, 16, 32, 64
Bitwise OR or 4, 8, 16, 32, 64
Bitwise XOR Xxor 4,8, 16, 32, 64
Parametrizable Shifter sh 4,8, 16, 32, 64
Reduced AND reduce_and | 4, 8, 16, 32, 64
Reduced OR reduce_or | 4,8, 16, 32, 64
Reduced XOR reduce_xor | 4, 8, 16, 32, 64

Adder/Subtractor add 8, 16, 32, 64

Multiplier mul 8, 16, 32, 64

Equal to eq 8,16, 32, 64

Less Than or Greater Than lgt 8, 16, 32, 64

Divider div 8, 16, 32, 64

Modulus mod 8, 16, 32, 64

graph statistics are used as inputs to the Aggregation MLP to predict
the physical characteristics of the input designs.

Table 1 lists all circuit graph node types and widths generated
from the input designs to train and test the SNS prediction flow.
Each unique pairing of type and width is a unique embedding of
what we call a “vocabulary”. The size of the vocabulary partly deter-
mines the difficulty in training the Circuitformer and the Aggrega-
tion MLP. Notice that the widths of the nodes are all power-of-two’s
and the maximal width is set at 64 bits. For all wiring connections
that are not of the widths listed, we round the widths to the closest
power-of-two. In addition, if a functional unit has multiple wiring
connections and the connections are of varying widths, we use the
maximal width.

Choosing the maximal wiring connection width and rounding
to the closest power-of-two reduces the number of embedding
vocabularies from around 1000 to 79 for the data set we used, greatly
improves the training time of the downstream neural network
models depicted in Figure 1 steps 3) and @. Furthermore, a smaller
set of embedding vocabulary allows better generalization of the
Circuitformer when and if the training data is scarce. For example,
a divider with a 17-bit width without rounding may never get
trained when it is only seen once from the input data set. Whereas
dividers with widths 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, and
23 are all considered an instance of the div16 when rounding is
employed and can be trained and inferred appropriately. Though
the downstream model training time and accuracy improve with
smaller vocabularies, there is some loss of information with respect
to the original input design when rounding is used. Given that one
of SNS’s strengths is to explore large design spaces quickly and the
final designs of interest will be synthesized at high fidelity using
traditional synthesis tools, this loss of information should not affect
the outcome of the designs chosen.

850

Ceyu Xu, Chris Kjellqvist, and Lisa Wu Wills

Input/Output, Register Vertex
(“Flip-Flop” Vertex)

O
O

Functional Unit Vertex
(Non-“Flip-Flop” Vertex)
Wiring Connections (;)
(Directed Edges)

=» Paths Sampled with k=2

¥
o

@O0

Figure 3: An Example of the Random Sampling Algorithm

O

3.2 Sampling Complete Circuit Paths from
GraphIR

Recent work DeepWalk [24] analyzes social networks by using
random path sampling over the entire undirected social network
graph to obtain graph information and perform graph analysis. SNS
is designed using a similar path-based approach, sampling random
circuit paths over the entire directed circuit graph. In addition,
SN restricts the paths that can be sampled, leveraging domain
knowledge of hardware design to reduce the large search space of
all random paths. Instead of sampling paths in a design beginning
and ending at any node, SNS samples paths beginning and ending
with nodes that contain flip-flops. This restriction generates random
paths that either begin or end with an input port, an output port,
or a register (D-flip-flop) of some sort (e.g., pipeline register, local
register). These paths essentially captures the “one-cycle behavior”
of the design, making it possible for SNS to predict timing (i.e., the
critical path) of circuit paths and entire designs. We call the paths
that begin and end with vertices that contain flip-flops complete
circuit paths. Figure 2 shows pictorially how a circuit graph in (b)
is sampled exhaustively to form four complete circuit paths in (c).
Each circuit path is represented with a sequence of vertices or
nodes.

With the restriction of only sampling from complete circuit paths,
the search space of the input design paths is reduced but still large.
For example, for a RocketCore design [2] with an area of 0.07mm?,
exhaustively sampling all complete circuit paths results in 5.59
million paths. In reality, circuit paths do not need to be exhaustively
sampled for us to predict the physical characteristics of the input
design as lots of paths are similar and do not give us additional
information. We develop a DFS-based (Depth-First-Search-based)
algorithm to randomly sample complete circuit paths that are evenly
distributed across the entire design shown in Algorithm 1. In this
algorithm, we set a parameter k such that only [%] of the successors
(or at least one successor) of each vertex are traversed as part of the
path. When k = 1, all complete circuit paths will be exhaustively
sampled (as in Figure 2(c)). When k = co, only one successor will
be traversed for each vertex. By choosing k, we can control how
many paths we want to sample. Figure 3 shows an example of how
paths can be sampled from a circuit graph when k = 2 so that half
of the successors (or at least one successor) are traversed at each
vertex. Note that each path begins and ends with a “flip-flop” vertex
that is lightly shaded. For our SNS training (details in Section 4), we

SNS’s not a Synthesizer: A Deep-Learning-Based Synthesis Predictor

Algorithm 1 Random Sampling of Complete Circuit Paths

r is a list to store paths sampled.
u is the vertex to start sampling from.
p is a list to keep track of unfinished sampled paths.
k is the parameter that controls how many paths are sampled.
Function Sample_Paths_From(u)
re=~0
if type(u) = dff V type(u) = io then
return r
else
for all sample [%] |u — o] vertices v from u — v do
p < Sample_Paths_From(v)
p <« prepend u to all paths in p
re—rup
end for
return r
end if
end Function

choose k = 5 empirically as sampling more paths does not improve
SNS model accuracy.

3.3 Predicting Circuit Path Physical
Charateristics

The simplest and the most intuitive model for predicting physical
characteristics of complete circuit paths is a linear regression model
that takes counts of each type of vertices on a circuit path as inputs,
because longer circuit paths lead to more vertices, and more ver-
tices lead to larger area, power, and cycle time (lower frequency).
However, a linear regression model is unable to infer based on the
order or the placement of the vertices in a circuit path. Consider
two complete circuit paths: [i08, mul16, add16, dff16] (shown
in Figure 2(c)) and [i08, add16, mul16, dff16] where the multi-
plier and the adder positions are swapped. For the first circuit path,
a traditional synthesizer like the Synopsys Design Compiler will
infer that an adder followed by a multiplier can be synthesized as a
MAC (multiply-accumulate) unit and produce a smaller area, power,
and timing than synthesizing the second circuit path. Whereas a
linear regression model will treat these two circuit paths as having
exact same number and types of vertices, producing identical area,
power, and timing predictions.

To improve the accuracy of our predictions, we need a model
that takes into account the ordering and the placement of the ver-
tices in a circuit path. Many natural language processing models
are designed to learn the ordering, placement, and the relationships
between words, making them good candidates. Transformer [33]
is one of such models that uses the attention mechanism for lan-
guage processing and inferring other sequential features such as
sounds [13] and signals [40] beyond natural language processing. In
our work, we augment the Transformer model to predict physical
characteristics of complete circuit paths called the Circuitformer.

While the canonical Transformer model is too large and too slow
for SNS, Circuitformer is designed for a much simpler task than
understanding a natural language. Input hardware designs have
much fewer vocabularies (shown in Table 1) than most natural

851

ISCA 22, June 18-22, 2022, New York, NY, USA

Table 2: Circuitformer and Transformer Hyperparameters

Circuitformer | Transformer
Vocabulary Set Size 79 30522
Hidden Layers 2 12
Attention Heads 2 12
Embedding Vector Size 128 768
Maximum Input Size 512 512
Total #Parameters 14 M 109 M

languages not to mention that a language sentence conveys much
more complicated semantics and meaning than a circuit path. Cir-
cuitformer is therefore designed by significantly reducing the size of
the Transformer model into a light-weight model with two hidden
layers and two attention heads. In addition, the embedding matrix,
which stores the vector representation of each embedding, is much
smaller in the Circuitformer. With these augmentations, we pruned
the original Transformer model with 109 million parameters into
a light-weight Circuitformer model with 1.4 million parameters.
Table 2 shows the hyperparameters of the Circuitformer.

3.4 Predicting Input Design Physical
Charateristics

Having extracted higher-level features from individual circuit paths,
we must now aggregate them in order to produce global inference
results. For SNS, we use Multi-Level Perceptrons (MLPs) to aggre-
gate path-level inferences to predict the area, timing and power for
the entire design.

To reduce these path statistics into single values, we perform
the following reductions:

3.4.1 Timing. The critical path of the design is the path that takes
the longest time to execute. Therefore, given a set of paths, we
output the maximum of the set.

3.4.2 Area. Because the path samples are evenly distributed, the
expected area of the design is proportional to the sum of the area
of each circuit path. Therefore, given a set of path areas, we output
the sum.

3.4.3 Power. Because power is cumulative across circuit paths, we
do the same as with circuit path’s area and output the sum.

3.4.4 Power Gating. Register activity coefficients indicate how of-
ten a register is expected to switch states. Since the power consump-
tion of a register is directly proportional to how often it switches
states, knowledge of this information allows considerably more
accurate results to be inferred. If the user provides clock gating
behavior and activity coefficients for each register for their design,
the path-based approach used by SNS enables the integration of
this information to produce higher quality inferences. To do this,
SNS simply scales the power of each path by the provided activity
coefficient first and then sums them together.

For each target feature (area, power, and energy), the correspond-
ing aggregation along with other graph statistics (e.g., functional
unit counts, shown in Figure 2) are provided as inputs to an MLP

ISCA 22, June 18-22, 2022, New York, NY, USA

Table 3: Example Hardware Designs Selected

Processor Core Rocket [2], Ariane [4], Sordor [1]
IceNet [1], RocketGPIO [1]
Gemmini [10], NVDLA [7]
SIMD ALUs, Hwacha [19]

FFT [25], Convolution

AES [25], Sha3 [1]

Peripheral Component
Machine Learning Acc.
Vector Arithmetic
Signal Processing
Cryptographic Arithmetic

Linear Algebra GEMM [25], SPMV [25]
Sort MergeSort [25], RadixSort [25]
Non-linear Function Lookup Tables
Approximation Piece-wise Approximation
Other FP Unit [12], Stencil2D [25]

Viterbi [25]

with three fully-connected layers each with 32 neurons, the output
of which is the final inference for the desired feature.

4 THE DATASET GENERATION AND THE
MODEL TRAINING OF SNS

In the SNS prediction pipeline, there are two deep learning models
that have to be trained: the Circuitformer and the Aggregation MLP.
In order to train the Circuitformer, a Generative Adversarial Net-
work [11] (GAN) model needs to be trained also. In this section, we
discuss how the training and testing datasets (a hardware design
dataset and a circuit path dataset) are populated (i.e., collected or
generated) as well as how these models are trained. Figure 4 shows
the SNS training flow along with dataset dependencies.

4.1 Hardware Design Dataset Generation

To populate the input dataset using hardware designs, we first
collect available, open-source Verilog designs. To avoid overfitting,
we include hardware designs from various classes of applications
and varying design complexities. We use many hardware designs
from open-source projects and open-source collections such as
Chipyard [1] and NVDLA [7]. MachSuite [25] also provides open-
source implementations of commonly accelerated low-level kernels.
However, MachSuite is a High Level Synthesis (HLS) benchmark
suite and the benchmarks as they are written may not generate
optimized Verilog designs. Thus, we re-implemented some of the
kernels in MachSuite using the hardware description language
Chisel [3] to produce high-quality and parameterizable Verilog
designs. Table 3 lists a wide range of designs that are selected as
part of our input hardware design dataset. Because some input
designs we obtained are parametrizable, designs with different
hardware parameters are generated whenever possible. In total, we
obtained 41 hardware designs.

These designs are synthesized using the Synopsys Design Com-
piler [14] with the FreePDK 15nm library [21]. The synthesis results
(i.e., area, timing, and power) combined with the Verilog source
files of each design are compiled into a dataset we call the Hardware
Design Dataset and its format is shown in Table 4. To access the
generated dataset, the input design verilog files are compiled and
turned into GraphIR on the fly before being used for the training
and the testing of the SNS models. We use a 50-50 split for the

852

Ceyu Xu, Chris Kjellqvist, and Lisa Wu Wills

Table 4: Format of the Hardware Design Dataset

l Verilog Files ‘ Timing ‘ Area

1000ps | 10000um?

‘ Power
1000mW

top.v, alu.v, funcl.v ...

Table 5: Format of the Circuit Path Dataset

l Paths
[mul32, add32, ...]

Power
0.01lmW

| Timing | Area
400ps 10um?

training and testing sets. The models are evaluated in Section 5.
Note that we avoid putting designs generated from the same pa-
rameterizable base design in both the training and the testing sets
to ensure the fairness of our model evaluation.

4.2 Complete Circuit Path Dataset Generation

Recall that SNS uses predictions from the complete circuit paths
and aggregates these results gradually into the prediction for the
input design as a whole. To obtain predictions from these complete
circuit paths, another dataset needs to be generated we call the
Circuit Path Dataset. In essence, we want to populate an analogous
dataset to the Hardware Design Dataset but instead of recording
input design files, we record complete circuit paths in the form of
a sequence of vertices or nodes that represent input/output ports,
registers, or functional units; instead of synthesized timing, area,
and power for the entire design, we obtain synthesized timing,
area, and power for individual circuit paths. This dataset is used to
train the Circuitformer; training details are described in the next
subsection. The format of the database is shown in Table 5.

We populate the Circuit Path Dataset by randomly sampling
from the hardware designs in the training set as described in Sec-
tion 3.2. However, only few unique circuit paths can be sampled
from a small hardware design training set (i.e., about 20 input de-
signs). To adequately train the Circuitformer, we generate artificial
but realistic circuit paths in the presence of input data scarcity em-
ploying the following two methods: Markov Chain and Sequence
Generative Adversarial Nets (SeqGAN) [41].

4.2.1 Markov Chain Method. The construction of complete circuit
paths consists of a sequence of vertices all with edges representing
wiring connections. We first analyze the sampled circuit paths
from the input design training set and compute a transition matrix;
the transition matrix stores the conditional probability of the next
vertex given the current vertex. The Markov Chain method then
allows us to generate more circuit paths by using the transition
matrix. The generated paths are unique but realistic as they are
variants of paths directly sampled from real designs.

4.2.2 SeqGAN Method. The Markov Chain method, though simple
and effective, does not work well for long complete circuit paths as
the transition matrix only contains conditional probabilities of two
adjacent vertices. To solve this problem, we use another method,
SeqGAN, which is a Generative Adversarial Network for sequences.
SeqGAN learns (and is trained with) the order of vertices from

SNS’s not a Synthesizer: A Deep-Learning-Based Synthesis Predictor

Synopsys DC Hardware Designs

| Hardware Design Dataset |—>| Design Training Set |
I
v * Train
Sample complete
circuit paths

* Palths ¢
| SeqGAN | | Markov Chain |
| Paths |

Aggregation

MLP

\)
Train

Synopsys DC

Paths Physical

characteristics Train

A4

Complete circuit paths
Dataset

Circuitformer

Figure 4: SNS Training Flow

Table 6: Training Hyper-parameters for SNS

Model Optimizer | Batch | LR | Epochs
Size
Circuitformer Adam [15] 128 0.001 256
Aggregation MLP | SGD [30] | 64 | 0.0001 | 10240
SeqGAN Adam 2048 0.01 130

the paths directly sampled from real designs and then generates
new unique, complete circuit paths that are similar to the ones
it learned from. The advantage of the SeqGAN method over the
Markov Chain method is that SeqGAN has a more holistic view
of the paths, and therefore it generates more meaningful, longer
complete circuit paths. However, it is still beneficial to include the
Markov Chain method because it produces sequences that are less
biased towards the training data and contain more noise than the
SeqGAN method alone. Adding training data with higher noise and
less bias to Circuitformer’s training set results in a more robust and
accurate model.

In total, we obtained 684 complete circuit paths from direct sam-
pling of the hardware design training dataset. Using the methods
described above, we generated an additional 4096 unique circuit
paths (~1000 from the Markov Chain method and ~3000 from the
SeqGAN method).

4.3 Model Implementation and Training

The Markov Chain model is implemented in-house without us-
ing any external libraries. The SeqGAN model is obtained from the
SeqGAN’s open-source project [41]. The dataset used to train the Se-
qGAN model are the complete circuit paths sampled from the train-
ing set of the Hardware Design Dataset. The Circuitformer model
is implemented in PyTorch as an augmentation of the Transformer
model using the Transformer library [36] from Hugging Face [35]

853

ISCA 22, June 18-22, 2022, New York, NY, USA

Z 1001 —— Training Loss
: 80 1 Validation Loss
601
<
= 407

20 -

100 150 200

Training Epochs

Figure 5: Circuitformer Training Loss vs. Validation Loss

and is trained using the Circuit Path Dataset. The Aggregation MLP
model is implemented in PyTorch and trained using the training
set of the Hardware Design Dataset as well as the path-specific
predictions generated by the Circuitformer as shown in Figure 4.
Table 6 shows the detailed training hyperparameters for each model.
As the Circuitformer model is newly proposed, its training loss vs.
validation loss are shown in Figure 5.

5 EVALUATION

In this section, we first present the evaluation of SNS itself, com-
paring the accuracy of the predicted area, power, and timing to
traditional synthesis tool results using Synopsys Design Compiler
(Synopsys DC) as our baseline. We also compare the wall clock
time to run the SNS predictions with the baseline to assess the
performance of SNS. We then present two case studies to highlight
SNS’s capability, scalability, and validity using a general-purpose
processor core (RISC-V BOOM) case study and a classic machine
learning accelerator (DianNao) case study.

5.1 Metrics for Evaluation

We use the following two metrics for evaluating the accuracy of
SNS: Mean Absolute Error Percentage (MAEP) and Root Relative
Square Error (RRSE). MAEP is an intuitive and tangible metric
that expresses the mean percentage by which a prediction differs
from the ground truth. However, this metric does not consider the
scale and distribution of the prediction space, creating bias against
models predicting features whose range is larger. To remedy this,
RRSE scales the root mean square error by the variance of the
ground truth. This results in a metric that is invariant in the size of
the range of the predicted feature.

In our evaluation, RRSE is used as the main metric for com-
paring predictions generated by SNS and Synopsys DC (i.e., our
ground truth), but MAEP is still provided because it provides a
more intuitive basis for comparison.

5.2 SNS Prediction Accuracy

Using the SNS models, training flow, and the generated Hardware
Design Dataset described in Section 4, we train and evaluate using
the training set size of 50% and use the other 50% as the testing
set. To evaluate SNS accuracy, we use the prediction flow depicted
in Section 3 and predict the physical characteristics of input designs
in the testing set. The prediction accuracy results are obtained in a
2-fold cross-validated fashion where the dataset is first split into
part A and part B, each containing 50% of the designs. Then part

ISCA 22, June 18-22, 2022, New York, NY, USA

Ceyu Xu, Chris Kjellqvist, and Lisa Wu Wills

4 10'
10
£ 31 & 10 b Z
o E £ 104
g g ERe y
£ 21 <10 e g 107
3 E Rt
% % Q 10 1 ’
O 14 -2 | =
Ei Ewo E ool
0 , - : 10° : 10'# . .
0 1 2 3 4 10° 107" 10' 10" 10' 10°
Real Timing (ns) Real Area (mmz) Real Power (mW)

Figure 6: SNS Prediction Accuracy to Predict Physical Characteristics of the Input Designs

Table 7: Evaluation Accuracy (Lower Better)

SNS Prediction Error Training Set % D-SAGE
50% 30%

Timing RRSE 0.67 0.82 0.83
Power RRSE 0.60 1.02 -
Area RRSE 0.22 0.26 -
Timing MAEP 38.00% | 61.46% -
Power MAEP 48.72% | 71.35% -
Area MAEP 54.57% | 52.02% -

A is evaluated using the model trained on part B while part B is
evaluated using the model trained on part A.

We compare the predictions against synthesis results generated
by Synopsys DC as our baseline. The distribution of the 2-fold
cross-validated area, power, and timing predictions are depicted
pictorially in Figure 6. Y-axis plots the predicted values while the X-
axis plots the baseline values; the closer the design points are from
the diagonal lines, the more accurate the predictions are. We make
two observations from these three plots. First, SNS generally pro-
duces acceptable synthesis results with few hard-to-predict designs.
For the use cases that we envision SNS to be the most useful, such
as performing large design space explorations, these predictions
will suffice in allowing the hardware developers to narrow large
design spaces and select desired designs. The selected designs can
then be synthesized, placed, and routed using traditional synthesis
toolsuite for high fidelity results before fabrication. Second, the
area and power axes are in log-scale, showing the wide range of
design points that are tested. For prior works [42, 44], only small
designs can be predicted. PRIMAL [44] and GRANNITE [42] can
predict designs up to 100k gates and 50k gates respectively while
SNS can predict designs up to 18 million gates.

To assess the robustness of SNS when training data is even more
scarce, we perform another experiment using 30% of the Hardware
Design Dataset as the training set and the other 70% as the testing
set. The RRSE and MAEP results of both the 50% and the 30%
training sets are detailed in Table 7. As expected, with a smaller
number of input designs as the training set, the model is not as
accurate as the ones trained on more input designs.

854

5000
102
RocketCore
0.07mm? ‘ 1000
7
e 500 £
g <
2 10" 4 .N g
. f
z °® ‘ 100 &
‘ 00 @
) [J [)
‘ . Stencil2D
100 4 .. 6.34mm? 50
256-entry 8sbit LUT
400um?
10
10! 10? 103 10* 10°

Synopsys DC Runtime (s)

Figure 7: SNS runtime vs. Synopsys DC runtime

5.3 Comparison with Related Works

Out of all the related works, D-SAGE [32] is probably the most
closely related to our work and is also state-of-the-art. D-SAGE is
a GNN-based operation delay predictor for HLS designs on FPGA
platforms, whereas SNS is a path-based and Transformer-based
synthesis predictor for Verilog designs. SNS predicts for area and
power while D-SAGE does not; D-SAGE does edge classification
while SNS does not. Both D-SAGE and SNS predict for timing of
hardware designs. D-SAGE achieves a timing prediction accuracy
with RRSE = 0.82; SNS is able to achieve the same level of accu-
racy compared to D-SAGE using just 30% of the input designs as
the training set (Timing RRSE = 0.83), and outperforms D-SAGE
(Timing RRSE = 0.68; lower better) with 50% of the input designs
as the training set. In addition to the quantitative comparison with
D-SAGE, Table 8 shows a qualitative comparison of SNS with other
recent related works, highlighting the capabilities of SNS.

5.4 SNS Performance Evaluation

SNS is designed to be an ultrafast predictor. For the 41 designs in
our dataset, we measure the runtime of SNS and the runtime of
Synopsys DC (both using wall clock time) to obtain the physical
characteristics of the hardware designs using a medium-sized server
platform with configurations shown in Table 9. The comparison of

SNS’s not a Synthesizer: A Deep-Learning-Based Synthesis Predictor

ISCA 22, June 18-22, 2022, New York, NY, USA

Table 8: A Qualitative Comparison with Related Works

| D-SAGE [32] | Aladdin [27] | MAESTRO [18] | ParaGraph [26] | APOLLO [39] [SNS |

Timing Prediction Yes Yes No Yes No Yes

Area Prediction No Yes Yes Yes No Yes

Power Prediction No Yes Yes Yes Yes Yes

ASIC Design Prediction No Yes Yes Yes Yes Yes
FPGA Design Prediction Yes No No No No No
Support General Purpose Designs Yes No No No No Yes
Support Large Designs (> 1M gates) No Yes Yes No Yes Yes
No Human Intervention Yes No No No Yes Yes

Table 9: Configuration of Benchmark Platforms

Server Platform Desktop Platform
Host Processor | 2 Intel Xeon Gold 6252 | Intel Core i9 11900

48C/96T@2.10GHz 8C/16T@2.5GHz
Memory 8 64GB 2933MHz 2 16GB 2667MHz
Storage 1TB SATA SSD 256GB SATA SSD
oS Ubuntu 18.04LTS Ubuntu 18.04LTS

the runtime between SNS and Synopsys DC is shown in Figure 7
with the SNS runtime on the Y-axis and the Synopsys DC runtime
on the X-axis. Each design point is represented as a circle, with area
(and complexity) of the design proportional to the size of the circle.
The color shades of the circle represents the SNS speedup w.r.t.
the baseline; darker slower and lighter faster. We highlight three
example designs along with their areas: a small lookup table, an in-
order processor core without caches, and a large 16-core accelerator
for processing floating point stencil 2D calculations.

We make two observations from this figure. First, SNS achieves a
speedup of up to three orders of magnitude compared to Synopsys
DC to predict area, power, and timing of the input designs. Second,
for larger designs that take longer to synthesize using Synopsys DC,
SNS shows an even larger speedup compared to the small designs.
The speedup of SNS over Synopsys DC on average is 760X.

In addition to this experiment, we consider the use case of run-
ning SNS on a desktop that is much less powerful than the server
(configuration in Table 9). We benchmarked SNS on the desktop
platform and compared it with the Synopsys DC runtime on the
server. The result shows that SNS still achieves an average speedup
of 574x.

5.5 Usage Model

System Verilog, Verilog HDL, and VHDL are directly supported by
SNS. Other parameterizable hardware description languages such as
Chisel [3] and PyMTL [20] can be used as hardware generators that
produce synthesizable Verilog, and the output Verilog can then be
used as inputs to SNS. HLS designs can also be indirectly supported
by using tools such as Bambu [8] to generate the synthesizable
HDL.

Besides supporting designs written in a broad range of hardware
description languages as well as HLS designs, SNS can be used
to perform large scale design space explorations. When doing so,
a parameterizable design is first compiled with combinations of

855

design parameters to form fixed RTL designs. SNS then predicts the
physical characteristics of all the generated RTL designs from the
previous step. Finally, the physical characteristics of the designs
are analyzed to find the best parameter choices. We demonstrate
two such case studies in the following two subsections.

5.6 BOOM Case Study

When developing a general-purpose processor core, especially one
with reasonable complexity, such as the RISC-V out-of-order core
BOOM [43], there are several tens of parameters that would result
in hundreds to thousands of possible designs. To select the best
designs that meet either a performance goal or a power and area
efficiency goal, performing a design space exploration using all
possible parameters can be prohibitively expensive. For example,
synthesizing a typical BOOM core takes around 2.5 hours to com-
plete using Synopsys DC on a server consuming 16 cores and 45
GB of memory.

One of the strengths of SNS is its speed and a natural use case is
to enable a large and high-dimensional design space exploration
(DSE) in order to select the desired Pareto designs during the hard-
ware development process. We conduct such an experiment using
the BOOM design parameters listed in Table 10. For this DSE of
2592 designs, SNS took 2.1 hours to complete the synthesis predic-
tions using the server in Table 9. If we were to conduct the same
experiment using Synopsys DC, it would have taken around 45
days.

To verify the accuracy of SNS predictions, we randomly sampled
20 design points from the 2592 designs and synthesized them using
Synopsys DC to compare the synthesized results with the predicted
results. SNS is able to achieve MAEPs for area, power, and timing of
12.58%, 29.61%, and 19.78% respectively, demonstrating the accuracy
of SNS.

We obtain the performance of these designs by running Core-
Mark [9] using the cycle accurate simulator provided by Chipyard
for each of the BOOM cores in the design set. By scaling each Core-
Mark score with the frequency predicted by SNS and incorporating
the area and power predicted by SNS, we obtain Figures 8 that
plotted performance vs. power and performance vs. area respec-
tively. We choose three designs on the Pareto frontier: The highest
performance design (HighPerf), the most power-efficient design
(PowerEff), and the most area-efficient design (AreaEff). The hard-
ware parameters for these three designs are shown in Table 11.

ISCA 22, June 18-22, 2022, New York, NY, USA

Table 10: Boom DSE Hyper parameters

l Parameter Name Possible Values Count

Branch Predictor TAGE-L, Boom2, 3
Alpha21264
Core Width 1,2,3,4 4
Memory Ports 1,2 2
Instruction Fetch Width 4,8 2
ROB Size 32, 64, 96 3
Physical Integer Registers | 52, 80, 100 3
Issue Slots 8, 16, 32 3
L1 Data Cache Ways 4,8 2
of Combinations: | 2592

19} il e | e

- 1.0 A - 1.0 A

% %

< e s Wi e

3 09 209 oy

S / o v

o / o] W

3 |/ 3 |/

N / N /.

=084 5084/

£ £

o o

z ‘ \ z
0.7 —2a o ‘ 0.7 .

0.0125 0.0150 0.0175 0.0200 40 60 80
Area (mm?) Power (mW)

Figure 8: Boom DSE Result: The HighPerf design is plotted
using a triangle shape, the PowerEff design is plotted using
a diamond shape, and the AreaEff design is plotted using a
square shape. The coremark scores are linearly normalized
such that the fastest core in our design has a score of one.

Based on the DSE result, we can make several observations about
the BOOM core design. First, we find that few designs have similar
performance compared to the HighPerf (i.e., the designs directly
to the right of HighPerf) but consume more power and more area.
These designs have 32 issue slots rather than the 16 slots in the
HighPerf design. This implies that having more issue slots in the
4-wide core will not provide a speedup because the core is bottle-
necked by the decoder and not the issue queue. Second, although
the PowerEff and the AreaEff designs have fewer issue slots, many
fewer integer registers, and much smaller ROBs than the HighPerf
design, they are only marginally (less than 10%) slower. This shows
that general-purpose single-core processors can suffer from dimin-
ishing performance returns from allocating too many resources.
Finally, all designs close to the Pareto frontier have only a single
memory port since CoreMark is not a memory intensive benchmark
and therefore is not bottlenecked by memory throughput.

5.7 DianNao Case Study

DianNao [6] is a neural network accelerator specialized for CNN
inference. As shown in Figure 9, the DianNao pipeline is divided
into three stages, NFU-1, NFU-2 and NFU-3 where T, defines the
shape and scale of each stage:

856

Ceyu Xu, Chris Kjellqvist, and Lisa Wu Wills

Table 11: Boom Selected configurations

l Parameter Name BestPerf \ PowerEff \ AreaEff
Branch Predictor TAGE Alpha21264 | TAGE
Core Width 4 4 2
Memory Ports 1 1 1
Fetch Width 8 8 4
ROB Size 64 32 32
Integer Registers 100 52 52
Issue Slots 16 8 8
L1 Data Cache Ways | 8 8 4

NFU-1 NFU-2 NFU-3
L X N
n
A+ A
X
Tn X NB
R
X
Tn /'

T
Tn*Tn Multipliers Tn Adder Trees Tn Activation Units

Figure 9: Abbreviated Reproduced Diagram for DianNao

e NFU-1: Composed of T, X T,, multipliers where T, also stands
for the maximum number of input neurons the DianNao
pipeline can process each cycle. NFU-1 is responsible for all
multiplications in fully-connected layers and convolution
layers.

e NFU-2: Composed of T,, adder trees each with T, inputs.
This layer is responsible for the summation of multiplication
results.

e NFU-3: Composed of T, activation units where the activation
function is approximated by linear piece-wise functions with
break-points, offset and slope stored in a lookup table. NFU-3
is responsible for the activation of neurons.

In this case study, we want to answer the following questions
quantitatively: 1) Can SNS predict the original DianNao synthesis
results? 2) How will different values for T,, affect the efficiency of
the accelerators? 3) How will different datatypes affect the hardware
complexity, efficiency, and model accuracy?

To answer these questions, we implement our version of Di-
anNao using Chisel [3]. We make it parameterizable and support
floating point operations in order to perform a design space explo-
ration on T, and the input datatypes. We build a cycle accurate
performance model for DianNao which generates clock-gating ac-
tivity coefficients for each register in the hardware. We evaluate
the accuracy of DianNao hardware on the CIFAR-10 [16] dataset
using AlexNet [17], which we train using the training set provided
by CIFAR-10.

To predict DianNao’s synthesis results, we implement the Dian-
Nao design with the parameters provided in the published paper

SNS’s not a Synthesizer: A Deep-Learning-Based Synthesis Predictor

Table 12: SNS ’s Synthesis Prediction for DianNao

Power | Area Timing

(mW) | (mm?) (ns)
Synthesis Result (65nm) | 132 0.846563 | 1.02
Scaled Result (15nm) 65.90 0.097302 | 0.33
SNS Prediction (15nm) 59.26 0.070269 | 0.36

Table 13: DianNao DSE Design Parameters

Parameter Name [Possible Values [Count ‘
T, 4,8, 16, 32 4
Datatype int8, int16, fp16, bf16, tf32, fp32 | 6
Pipelines stages 3 (NFU-1:1, NFU-2:1, NFU-3:1), | 2
(name:# of stages) | 8 (NFU-1:3, NFU-2:2, NFU-3:3)

Reduction Width 4, 8,16 3
Activation Entries | 2, 4, 8, 16 4

Total #Combinations 576

“g] ! ! 1 =) —— Energy per Inference . 64
4 —_ = q i .
g10°41 1 o 2 0.8 Design Points
2 ! 10°g £ .
= S ® € 3 . H 32§
5 3 1 = 2 1 : =
£ 10’ 3 8 . E
[y Average Area Z d’é 0.6 Average Power 5
| : 16
-§ 2 | | I ED 5 H B ¢ E
g 10 k 1,58 = : £ i $
& - 10° 2 o4 ! :
< —— Area Efficiency < 5 I ! N HI
E 10I Design Points ;f: H : &
02U i
4 8 16 32 4 8 16 32
Tn Tn

(a) T, (#Input Neurons) vs. Area
Efficiency vs. Area

(b) T, (#Input Neurons) vs. Power
Efficiency vs. Power

Figure 10: Design Space Exploration on T, the original Di-
anNao design is plotted as the red dot in the figures

and use SNS’s prediction flow. Using the activity coefficients gener-
ated from the performance model, we can predict DianNao’s power
consumption with power gating. SNS is able to predict the area,
power, and timing of DianNao with the error of 27.8%, 10.1% and
9.1% respectively, shown in Table 12. Note that the original synthe-
sis results of the DianNao are in 65nm (first row of Table 12) which
have to be scaled [28] to the technology size that SNS uses (15nm).

To perform our design space exploration on T, and the input
datatype, we generated 576 DianNao designs using all possible
combinations of parameters shown in Table 13, and used SNS to
predict the power, area, and timing for these designs. The predic-
tion process takes 809 seconds running on the server described in
Table 9.

We plot the power efficiency and the area efficiency in Fig-
ures 10(a) and (b) for different T;,. Design points and effciencies are
plotted against the primary Y-axis while the area and power are
plotted against the secondary Y-axis. Figure 10(a) shows that the
area of the designs increases as T, goes from 4 to 32 and the area
efficiency (which is defined as the inference throughput per unit

857

ISCA 22, June 18-22, 2022, New York, NY, USA

787.0 7 87.0

& Prediction Accuracy (%) = Prediction Accuracy (%)

E 10 5 8653 = 4 8653
3 = £ ! =
g Iy 860 3
Emy 3 3 =] 5
=10 g 2 8
z 52 2 85.5 2
5 £ £
2 10 05 2 107" 85085
@ _ ; T B Z= B
5 Arc? Efﬁc.lcncy Plgas & E Energy pef Inference 845 &
210 Design Points ' 53} Design Points

L 84.0 1 84.0
int8 intl6 fpl6 bfl6 tf32 fp32 int8 intl6 fpl6 bfl6 tf32 fp32

(a) Datatype vs. CIFAR-10 Accuracy vs. (b) Datatype vs. CIFAR-10 Accuracy vs.
Area Efficiency Power Efficiency

Figure 11: Design Space Exploration on different datatypes,
the original DianNao design is plotted as the red dot in the
figures

area) is at the maximum when T,, = 16. Figure 10(b) shows that the
power of the designs also increases for larger T,, and the energy
per inference is also the lowest for T,, = 16 (meaning designs with
T, = 16 have the best power efficiency compared to designs with
other T,). This analysis shows that T,, = 16 is an optimum for both
area and power efficiency which explains why the DianNao paper
chooses T, = 16 for their design.

Hardware complexity vs. accuracy is another important trade-
off to consider when designing neural network accelerators. Fig-
ures 11(a) and (b) show that using a dataype with less expensive
operations greatly increases the efficiency of a design in terms of
both area and power. Especially for our specific task of CIFAR-10 im-
age classification, going beyond Int16 does not provide us with any
appreciation in accuracy. This suggests that using Int16 is optimal
and explains why the original DianNao paper chooses Int16.

6 RELATED WORK

With the increasing complexity of computer chip designs, it is
becoming prohibitively slow to use conventional techniques such
as gate-level synthesis and cycle-accurate simulation to model large
systems. To efficiently and accurately model large-scale systems,
machine learning techniques have been used to predict modeling
results, often leading to orders of magnitude faster runtime.

Traditional Machine Learning Models. Traditional Machine
Learning models have been used to predict various computer sys-
tem characteristics, including the power, area (resource usage), and
timing of particular hardware designs. Barboza et al. [5] proposed
using an ensemble of models including Lasso, Artificial Neural Net-
works (ANNs), and Random Forests to reduce the pessimism of
timing predictions provided by commercial tools. Pyramid [22] pro-
posed a machine learning framework that estimates the resource
usage of an HLS design where they tested and compared the pre-
diction accuracies of many ML models including Linear Regression,
ANNS, Supporting Vector Machines (SVMs), and Random Forests.
Apollo [39] designed a linear model to model the power of a micro-
processor executing different workloads with an R? >0.95 accuracy
and showed that the simulation time was reduced from months to
minutes.

ISCA 22, June 18-22, 2022, New York, NY, USA

Although traditional machine learning models are fast and ro-
bust, it is unable to perform complicated inferences such as inferring
the physical characteristics of an arbitrary hardware design based
solely on the input HDL source codes as we demonstrated in this
work.

Convolutional Neural Networks for Power Estimation. Con-
volutional Neural Networks (CNNs) can predict the power of inte-
grated circuits with reasonably good accuracy. PRIMAL [44] was
able to predict the cycle-accurate power of RTL designs 50x faster
than gate-level power analysis tools with the help of CNNs. Xie et
al. improved the results further by introducing Max-CNN [38] [37],
increasing the accuracy, and making the model transferable to dif-
ferent designs. CNNs can be utilized to predict the power of a
hardware design well, however, it is not able to infer path-level
characteristics such as critical path timing as SNS can.

Graph Neural Networks for Circuits. Using machine Learn-
ing techniques to infer circuit characteristics by designing appropri-
ate feature extraction mechanism is a particularly difficult task. Both
CNNs and traditional machine learning models require carefully de-
signed feature extraction mechanisms. In comparison, Graph Neural
Networks (GNNs) can work on graph representations of circuits
directly without the need to do feature extraction. ParaGraph [26]
proposed a GNN based model to predict device parameters and
layout parasitics. GRANNITE [42] uses GNNs to predict the run-
time power of a circuit, achieving an 18.7Xx speedup over gate-level
simulations with less than 5.5% error. D-SAGE [32] is a customized
GraphSage model specializing in predicting the operation delay of
HLS designs.

GNNs can predict various physical characteristics of hardware
designs with high accuracy, however, it is slow and does not scale
well to very large circuits. We demonstrated the performance as well
as the scalability of SNS in this work, showing that SNS performs
on average 760X better than Synopsys DC and is able to infer very
large circuits up to 18 million gates.

A Path-based Approach from DeepWalk. DeepWalk [24] is an
alternative approach to graph analysis that, instead of using GNNs
and message passing mechanisms, performs random walks of the
graph. As a result, DeepWalk is much faster, and is able to scale
to large graphs whereas GNNs cannot. As we have demonstrated
in this work, this path-based approach proposed by DeepWalk
generalizes well and can be expanded and applied towards circuit
analysis.

Non-Machine Learning Models for Reducing Synthesis Re-
sult Feedback Delay. Machine Learning methods are not the only
possible way to reduce the synthesis result feedback cycle. Au-
toAx [23] proposed using approximated components to synthesize
the HDL files, which makes the synthesis process 162X faster. Al-
addin [27] proposed a framework to estimate the performance,
power, and area of the accelerators within an SoC platform pre-RTL
using non-learning-based models. It reduces the cycle of knowing
the synthesis result from tens of hours to minutes while achiev-
ing high accuracy. Both of these methods cannot predict arbitrary
hardware designs with similar post-RTL, post-synthesis accuracy
without human intervention.

858

Ceyu Xu, Chris Kjellqvist, and Lisa Wu Wills

7 CONCLUSION

Rapid development and refinement of hardware designs require
that synthesis results can be obtained quickly. However, synthe-
sizing a small design, for example, a 32x32 systolic array with an
area of approximately 2.5mm?, takes one full day to complete using
traditional synthesis toolchains such as the Synposys Design Com-
piler. With growing design sizes and therefore growing synthesis
delays, modern hardware design toolchains have had to make com-
promises such as adopting modular design methodologies, which
can have negative effects on the overall quality of the design.

To remedy these challenges, we have shown how SNS uses mod-
ern machine learning techniques to predict synthesis results with
high accuracy. While it does not provide a synthesized netlist, it
provides many of the design level properties (i.e., timing, power,
and area estimates) necessary to inform hardware developers in
their design process.

While prior work [22, 32, 38, 42] used representations of the
entire circuit graph to perform inference, SNS takes inspiration
from Transformer networks [33] and DeepWalk [24] and takes a
different approach. SNS samples paths from the input design and
performs inference on them using a novel, lightweight Transformer
model called CircuitFormer to accurately deduce local properties of
the overall design. These local properties are then aggregated and
refined using Multi-Layer Perceptrons to produce inferences on
global properties of the circuit design, providing an average 760X
speedup over traditional synthesis toolchains with an average RSSE
error of 0.4998.

We demonstrate the performance and accuracy of this model
by performing exhaustive design space explorations on a general
purpose out-of-order RISC-V processor BOOM [43] and on a classi-
cal machine learning accelerator, DianNao [6]. Our results showed
that by using SNS, high-dimension design space explorations can
now be performed in a reasonable amount of time and can properly
inform the developer in selecting the optimal parameters for their
design.

ACKNOWLEDGMENTS

We thank the reviewers for their insightful comments. This work
was supported in part by an National Science Foundation CAREER
award CCF-2045974, and in part by the Center for Applications
Driving Architectures (ADA), one of six centers of JUMP, a Semicon-
ductor Research Corporation program co-sponsored by DARPA.

REFERENCES

[1] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar,
Harrison Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton, et al.
2020. Chipyard: Integrated design, simulation, and implementation framework
for custom socs. IEEE Micro 40, 4 (2020), 10-21.

Krste Asanovi¢, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee,
Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert
Ou, David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy
Vo, and Andrew Waterman. 2016. The Rocket Chip Generator. Technical Re-
port UCB/EECS-2016-17. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Ri-
mas AviZienis, John Wawrzynek, and Krste Asanovi¢. 2012. Chisel: Constructing
hardware in a Scala embedded language. In DAC Design Automation Conference
2012.1212-1221. https://doi.org/10.1145/2228360.2228584

[2

(3]

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.1145/2228360.2228584

=

SNS’s not a Synthesizer: A Deep-Learning-Based Synthesis Predictor

[4] Jonathan Balkind, Katie Lim, Fei Gao, Jinzheng Tu, David Wentzlaff, Michael

Schaffner, Florian Zaruba, and Luca Benini. 2019. OpenPiton+ Ariane: The First
Open-Source, SMP Linux-booting RISC-V System Scaling From One to Many
Cores. In Workshop on Computer Architecture Research with RISC-V (CARRV). 1-6.
Erick Carvajal Barboza, Nishchal Shukla, Yiran Chen, and Jiang Hu. 2019. Ma-
chine learning-based pre-routing timing prediction with reduced pessimism. In
2019 56th ACM/IEEE Design Automation Conference (DAC). IEEE, 1-6.

Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. 2014. Diannao: A small-footprint high-throughput accel-
erator for ubiquitous machine-learning. ACM SIGARCH Computer Architecture
News 42, 1 (2014), 269-284.

Farzad Farshchi, Qijing Huang, and Heechul Yun. 2019. Integrating NVIDIA
Deep Learning Accelerator (NVDLA) with RISC-V SoC on FireSim. CoRR
abs/1903.06495 (2019). arXiv:1903.06495 http://arxiv.org/abs/1903.06495
Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi,
Michele Fiorito, Marco Lattuada, Marco Minutoli, Christian Pilato, and Antonino
Tumeo. 2021. Invited: Bambu: an Open-Source Research Framework for the
High-Level Synthesis of Complex Applications. In 2021 58th ACM/IEEE Design Au-
tomation Conference (DAC). IEEE, 1327-1330. https://doi.org/10.1109/DAC18074.
2021.9586110

Shay Gal-On and Markus Levy. 2012. Exploring coremark a benchmark maximiz-
ing simplicity and efficacy. The Embedded Microprocessor Benchmark Consortium
(2012).

Hasan Genc, Ameer Haj-Ali, Vighnesh Iyer, Alon Amid, Howard Mao, John
Wright, Colin Schmidt, Jerry Zhao, Albert Ou, Max Banister, et al. 2019. Gemmini:
An agile systolic array generator enabling systematic evaluations of deep-learning
architectures. arXiv preprint arXiv:1911.09925 3 (2019).

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative
Adversarial Networks. arXiv:1406.2661 [stat. ML]

John Hauser. 2022. Berkeley Hardfloat. Retrieved April 18, 2022 from http:
//www.jhauser.us/arithmetic/HardFloat html

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Si-
mon, Curtis Hawthorne, Andrew M Dai, Matthew D Hoffman, Monica Dinculescu,
and Douglas Eck. 2018. Music transformer. arXiv preprint arXiv:1809.04281(2018).
Synopsys Inc. 2014. Design Compiler Graphical: Create a Better Starting Point
for Faster Physical Implementation. Technical Report. 700 East Middlefield Road,
Mountain View, CA 94043.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. https://doi.org/10.48550/ARXIV.1412.6980

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012), 1097-1105.

Hyoukjun Kwon, Prasanth Chatarasi, Vivek Sarkar, Tushar Krishna, Michael
Pellauer, and Angshuman Parashar. 2020. Maestro: A data-centric approach to
understand reuse, performance, and hardware cost of dnn mappings. IEEE micro
40, 3 (2020), 20-29.

Yunsup Lee, Colin Schmidt, Albert Ou, Andrew Waterman, and Krste Asanovi¢.
2015. The Hwacha vector-fetch architecture manual, version 3.8. 1. EECS Depart-
ment, University of California, Berkeley, Tech. Rep. UCB/EECS-2015-262 (2015).
Derek Lockhart, Gary Zibrat, and Christopher Batten. 2014. PyMTL: A Unified
Framework for Vertically Integrated Computer Architecture Research. In 2014
47th Annual IEEE/ACM International Symposium on Microarchitecture. 280-292.
https://doi.org/10.1109/MICRO.2014.50

Mayler Martins, Jody Maick Matos, Renato P. Ribas, André Reis, Guilherme
Schlinker, Lucio Rech, and Jens Michelsen. 2015. Open Cell Library in 15Nm
FreePDK Technology. In Proceedings of the 2015 Symposium on International
Symposium on Physical Design (Monterey, California, USA) (ISPD ’15). ACM, New
York, NY, USA, 171-178. https://doi.org/10.1145/2717764.2717783

Hosein Mohammadi Makrani, Farnoud Farahmand, Hossein Sayadi, Sara Bondi,
Sai Manoj Pudukotai Dinakarrao, Houman Homayoun, and Setareh Rafatirad.
2019. Pyramid: Machine Learning Framework to Estimate the Optimal Timing
and Resource Usage of a High-Level Synthesis Design. In 2019 29th International
Conference on Field Programmable Logic and Applications (FPL). 397-403. https:
//doi.org/10.1109/FPL.2019.00069

Vojtech Mrazek, Muhammad Abdullah Hanif, Zdenek Vasicek, Lukas Sekanina,
and Muhammad Shafique. 2019. autoax: An automatic design space exploration
and circuit building methodology utilizing libraries of approximate components.
In 2019 56th ACM/IEEE Design Automation Conference (DAC). IEEE, 1-6.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701-710.

Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David
Brooks. 2014. Machsuite: Benchmarks for accelerator design and customized
architectures. In 2014 IEEE International Symposium on Workload Characterization
(IISWC). IEEE, 110-119.

ISCA 22, June 18-22, 2022, New York, NY, USA

Haoxing Ren, George F Kokai, Walker] Turner, and Ting-Sheng Ku. 2020. Para-
Graph: Layout parasitics and device parameter prediction using graph neural
networks. In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE,
1-6.

Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. 2014.
Aladdin: A pre-rtl, power-performance accelerator simulator enabling large
design space exploration of customized architectures. In 2014 ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA). IEEE, 97-108.

Aaron Stillmaker and Bevan Baas. 2017. Scaling equations for the accurate
prediction of CMOS device performance from 180 nm to 7 nm. Integration 58
(2017), 74-81.

David Suggs, Mahesh Subramony, and Dan Bouvier. 2020. The AMD “Zen 2”
Processor. IEEE Micro 40, 2 (2020), 45-52. https://doi.org/10.1109/MM.2020.
2974217

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. 2013. On the
importance of initialization and momentum in deep learning. In International
conference on machine learning. PMLR, 1139-1147.

Martin Svedin, Steven WD Chien, Gibson Chikafa, Niclas Jansson, and Artur
Podobas. 2021. Benchmarking the Nvidia GPU Lineage: From Early K80 to
Modern A100 with Asynchronous Memory Transfers. In Proceedings of the 11th
International Symposium on Highly Efficient Accelerators and Reconfigurable Tech-
nologies. 1-6.

Ecenur Ustun, Chenhui Deng, Debjit Pal, Zhijing Li, and Zhiru Zhang. 2020.
Accurate operation delay prediction for FPGA HLS using graph neural networks.
In Proceedings of the 39th International Conference on Computer-Aided Design.
1-9.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998-6008.
Clifford Wolf. 2016. Yosys open synthesis suite. https://yosyshq.net/yosys
Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2019. HuggingFace’s Transformers: State-of-the-art
Natural Language Processing. https://doi.org/10.48550/ARXIV.1910.03771
Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2020. Transformers: State-of-the-Art Natural Language
Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Association for Computational
Linguistics, Online, 38-45. https://www.aclweb.org/anthology/2020.emnlp-
demos.6

Zhiyao Xie, Hai Li, Xiaoqing Xu, Jiang Hu, and Yiran Chen. 2020. Fast IR drop esti-
mation with machine learning. In Proceedings of the 39th International Conference
on Computer-Aided Design. 1-8.

Zhiyao Xie, Haoxing Ren, Brucek Khailany, Ye Sheng, Santosh Santosh, Jiang
Hu, and Yiran Chen. 2020. PowerNet: Transferable dynamic IR drop estimation
via maximum convolutional neural network. In 2020 25th Asia and South Pacific
Design Automation Conference (ASP-DAC). IEEE, 13-18.

Zhiyao Xie, Xiaoqing Xu, Matt Walker, Joshua Knebel, Kumaraguru Palaniswamy,
Nicolas Hebert, Jiang Hu, Huanrui Yang, Yiran Chen, and Shidhartha Das. 2021.
APOLLO: An Automated Power Modeling Framework for Runtime Power In-
trospection in High-Volume Commercial Microprocessors. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture. 1-14.
Genshen Yan, Shen Liang, Yanchun Zhang, and Fan Liu. 2019. Fusing transformer
model with temporal features for ECG heartbeat classification. In 2019 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 898—
905.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. 2017. Seqgan: Sequence
generative adversarial nets with policy gradient. In Proceedings of the AAAI
conference on artificial intelligence, Vol. 31.

Yanging Zhang, Haoxing Ren, and Brucek Khailany. 2020. GRANNITE: Graph neu-
ral network inference for transferable power estimation. In 2020 57th ACM/IEEE
Design Automation Conference (DAC). IEEE, 1-6.

[43] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. 2020. Sonic-

BOOM: The 3rd Generation Berkeley Out-of-Order Machine. In Fourth Workshop
on Computer Architecture Research with RISC-V.

Yuan Zhou, Haoxing Ren, Yanqing Zhang, Ben Keller, Brucek Khailany, and Zhiru
Zhang. 2019. PRIMAL: Power inference using machine learning. In Proceedings
of the 56th Annual Design Automation Conference 2019. 1-6.

https://arxiv.org/abs/1903.06495
http://arxiv.org/abs/1903.06495
https://doi.org/10.1109/DAC18074.2021.9586110
https://doi.org/10.1109/DAC18074.2021.9586110
https://arxiv.org/abs/1406.2661
http://www.jhauser.us/arithmetic/HardFloat.html
http://www.jhauser.us/arithmetic/HardFloat.html
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.1109/MICRO.2014.50
https://doi.org/10.1145/2717764.2717783
https://doi.org/10.1109/FPL.2019.00069
https://doi.org/10.1109/FPL.2019.00069
https://doi.org/10.1109/MM.2020.2974217
https://doi.org/10.1109/MM.2020.2974217
https://yosyshq.net/yosys
https://doi.org/10.48550/ARXIV.1910.03771
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Objective of SNS
	2.2 Novelty of SNS

	3 The Design of SNS: Path-Based Synthesis Predictor using Neural Networks
	3.1 Turning Input Designs into Circuit Graphs
	3.2 Sampling Complete Circuit Paths from GraphIR
	3.3 Predicting Circuit Path Physical Charateristics
	3.4 Predicting Input Design Physical Charateristics

	4 The Dataset Generation and the Model Training of SNS
	4.1 Hardware Design Dataset Generation
	4.2 Complete Circuit Path Dataset Generation
	4.3 Model Implementation and Training

	5 Evaluation
	5.1 Metrics for Evaluation
	5.2 SNS Prediction Accuracy
	5.3 Comparison with Related Works
	5.4 SNS Performance Evaluation
	5.5 Usage Model
	5.6 BOOM Case Study
	5.7 DianNao Case Study

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

