
PyTFHE: An End-to-End Compilation and
Execution Framework for Fully Homomorphic

Encryption Applications
Jiaao Ma

Dept. of Computer Science
Duke University

Durham, North Carolina, USA
jiaao.ma@duke.edu

Ceyu Xu
Dept. of Computer Science

Duke University
Durham, North Carolina, USA

ceyu.xu@duke.edu

Lisa Wu Wills
Dept. of Computer Science

Duke University
Durham, North Carolina, USA

lisa@cs.duke.edu

Abstract—Fully Homomorphic Encryption (FHE) is a powerful
cryptographic scheme that enables computation on encrypted
data, which allows clients to offload computation to an untrusted
third party without compromising data privacy. However, FHE
has not yet been widely adopted due to its enormous compu-
tational overhead. Further, cryptographic software development
requires specialized expertise and presents a significant challenge
when applying FHE to a broad range of applications.

We present PyTFHE, a framework that tackles these diffi-
culties by enabling highly productive FHE application develop-
ment and orders of magnitude more efficient FHE application
execution. PyTFHE is built on top of the TFHE (Fast Fully
Homomorphic Encryption over the Torus) scheme, which is an
FHE scheme that supports gate-level evaluation and arbitrary
depth of boolean circuits. PyTFHE is designed in a TFHE-specific
approach, allowing state-of-the-art optimizations for TFHE ap-
plications. Specifically, PyTFHE features ChiselTorch, the first
compiler that allows easy generations of privacy-preserving deep
neural network models with PyTorch-compatible APIs. PyTFHE
is also the first FHE framework that employs a powerful backend
enabling efficient execution of TFHE applications on distributed
CPU systems and high-performance GPUs. We demonstrate the
effectiveness of PyTFHE by benchmarking the framework using
VIP-Bench and implementing privacy-preserving deep neural
networks and evaluating their performance on various systems.
We compare the performance of our generated TFHE program
execution with three existing frameworks, Google Transpiler,
Cingulata, and E3. We show that PyTFHE achieves one to two
orders of magnitude performance advantage.

Index Terms—Fully homomorphic encryption, Compiler
toolchain, Privacy-preserving computation, TFHE

I. INTRODUCTION

As cloud computing becomes more popular, more sensi-
tive data is being stored in the cloud, making it vulnerable
to misuse. Encryption is a common method for protecting
sensitive data and maintaining privacy. However, conventional
encryption schemes require data to be decrypted before it can
be used in computations, which can significantly limit the level
of data security, allowing third-party entities, such as cloud

This work was supported in part by an National Science Foundation
CAREER award CCF-2045973, and in part by the Center for Applications
Driving Architectures (ADA), one of six centers of JUMP, a Semiconductor
Research Corporation program co-sponsored by DARPA.

Public Key

?

Homomorphic
Evaluation

Encrypt Upload

?

DownloadDecrypt

Sensitive
Data

Decrypted
Results

Secret Key
Client

f

Fig. 1. Privacy-preserving Computation in a Cloud Computing Scenario

providers, to collect sensitive data without client authorization.
In contrast, fully homomorphic encryption (FHE) is a type of
encryption scheme that allows computation to be performed
directly on ciphertexts, without the need to decrypt them first.
Figure 1 shows how the data privacy is perserved when using
an FHE scheme in a cloud computing scenario. In this scheme,
the ciphertexts can only be decrypted by the client after all
the computations are performed in the cloud. Throughout the
process, the cloud provider has no access to the plaintexts,
protecting the privacy of the data.
Although FHE is a viable method for offloading com-

putations to the cloud while perserving data privacy, the
computing industry has not yet embraced this scheme to a
great extent. The performance of FHE is still far from being
on par with traditional encryption techniques, significantly
impacting the wide adoption of FHE. Moreover, developing
FHE applications is challenging due to the complexity of
the underlying FHE schemes and the lack of FHE-targeted
toolchains.
In this work, we propose the PyTFHE framework to facili-

tate privacy-preserving computation offload on the server side.
PyTFHE is a highly productive and flexible framework for
developing complex FHE applications such as neural network
models. The toolchain also generates high-performance FHE
application binaries and in turn improves the runtime of

24

2023 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

979-8-3503-9739-0/23/$31.00 ©2023 IEEE
DOI 10.1109/ISPASS57527.2023.00012

https://orcid.org/0009-0005-4628-9385
https://orcid.org/0000-0002-2668-6456
https://orcid.org/0000-0002-3574-3440

FHE-enabled application execution by one to two orders of
magnitude compared to existing frameworks.
This work makes the following contributions:
• An end-to-end toolchain to develop, compile, and execute

TFHE (the specific FHE scheme we explore in this work)
applications called PyTFHE. The framework takes in
PyTorch models and compiles them into optimized TFHE
binaries for highly efficient execution.

• A neural network to Verilog compiler called Chisel-
Torch that guarantees correctness by utilizing pre-built
Chisel [1] modules, is highly productive by providing a
PyTorch-compatible API for developing TFHE-enabled
neural network models, and is highly performant by
employing model layer Verilog fusion and providing
parameterizable data type selection.

• A highly performant distributed CPU backend for
PyTFHE that supports the evaluation of TFHE applica-
tions on multiple server nodes and a state-of-the-art GPU
backend for PyTFHE that performs 62× better than the
current state-of-the-art TFHE GPU library and executor
cuFHE [2].

• An in-depth comparison against state-of-the-art TFHE
compilers/frameworks including High-Level-Synthesis-
based Google Transpiler [3] and Domain-Specific-
Language-based Cingulata [4] and E3 [5].

II. BACKGROUND

A. Fully Homomorphic Encryption Schemes

An FHE scheme defines a set of functions that manipulate
plaintext and encrypted data. The key generation function
produces a pair of public key pk and secret key sk denoted
as (pk, sk) ← KeyGen. The encryption function takes
plaintext m as input and generates ciphertext c using the
public key and a security parameter λ denoted as c ←
Encryptpk,λ(m). The decryption function takes a cipher-
text as input and generates plaintext using the secret key
denoted as m ← Decryptsk(c). The evaluation function
produces a ciphertext of the evaluation result on the input
ciphertexts given a function to be evaluated and a public
key denoted as c’ ← Evaluatef,pk(c1,c2,...). A cor-
rectly implemented FHE scheme guarantees that, given a
function f and ciphertexts c1,c2,... that encrypt plain-
text messages m1,m2,... under keypair (pk, sk), the
function Decryptsk(Evaluatef,pk(c1,c2,...)) yields
the same results as the plaintext operation f(m1,m2,...)
without revealing any information about m1,m2... during
homomorphic evaluation.
The cryptographic hardness of a system describes the re-

sistance of the system against attacks. Learning with Error
(LWE) is a type of mathematical problem that serves as a
basis for many FHE schemes to provide the required hardness
guarantees. In the LWE problem, ”noisy” samples, also called
LWE samples, are generated based on a secret key and
deliberately added with random noise. Briefly speaking, the
LWE problem involves creating these noisy samples and using

them to recover the original secret key. One way for LWE to
provide the required hardness is to make it computationally
infeasible to recover the original key from the noisy samples.
This implies that even having access to the encrypted data,
an attacker can’t decode them without the original secret key.
However, while providing safety guarantees, the added noise
would grow when homomorphic operations are performed and
eventually lead to undesired decryption results.
To address this issue, many FHE schemes [6]–[8] provide a

bootstrapping operation reducing the accumulated noise to al-
low further homomorphic operations. However, bootstrapping
is a computationally expensive operation and often dominates
the execution time of FHE applications.

B. The TFHE Scheme and the TFHE Library

The TFHE (Fast Fully Homomorphic Encryption Over the
Torus) scheme (also known as the CGGI scheme) [7] is an
FHE scheme that supports homomorphic binary gate evalua-
tion. Particularly, it provides fast programmable bootstrapping
which reduces the noise of a ciphertext while simultaneously
performing an arbitrary lookup-table operation on the input.
The TFHE scheme is implemented by several libraries [2],
[9], [10]. The TFHE library [10] is a C++ implementation
intended for CPUs and targets computation using binary gates
(e.g., NAND). The basic building block in the TFHE library
is a bootstrapped-Gate, which performs bootstrapping on a
ciphertext after each gate evaluation to mitigate the noise
accumulation problem.

C. Word-wise FHE Schemes

FHE schemes are primarily distinguished by the types of
plaintext data and operations they support. Besides bit-wise
FHE schemes such as TFHE, another type of FHE scheme
is the word-wise FHE scheme, which supports homomorphic
operations on a vector. The Cheon, Kim, Kim and Son (CKKS)
scheme [6] is one of the most popular word-wise FHE schemes
and has been studied in many prior works. CKKS supports
encoding a vector of fixed-point numbers into a ciphertext
and performing homomorphic element-wise addition, element-
wise multiplication, and cyclic rotation on a granularity of an
entire ciphertext. Being a Ring-variant LWE (RLWE)-based
scheme, CKKS also requires adding noise into the cipher-
texts. One highlight of CKKS is that the noise was treated
as part of the error during homomorphic operations, which
makes it efficient in approximated computations. However, like
other word-wise FHE schemes, CKKS has no direct access
to individual elements in a vector and operations must be
performed on a ciphertext as a whole, which greatly limits
its flexibility and makes operations such as look-up tables
and multi-headed attention that require accessing individual
elements in a vector more difficult compared to bit-wise
schemes. While word-wise FHE schemes efficiently support
linear operations over wide vectors of ciphertexts, they do
not support non-linear operations, such as ReLU or argmax
which are ubiquitous in AI and data analytics. Although
bitwise schemes are less efficient per bit, they are much more

25

flexible because boolean operations can be used to express
arbitrary functions. Further, for real-world deep neural network
applications, CKKS requires a large number of rotation keys to
support cyclic rotations, which can take up to tens of gigabytes
whereas the public key size of TFHE is a few megabytes. The
rotation keys have to be transferred to the server for evaluation,
which can be a bottleneck for the practicality of CKKS in real-
world applications.
For this work, we choose to focus on providing a highly

productive and performant development and execution com-
piler framework for neural network models using the TFHE
scheme because of its great balance between flexibility and
efficiency.

D. Threat Model and Security

We assume a semi-honest threat model where the adversary
who performs the computation has access to the ciphertexts
and is curious about the plaintexts but does not have the secret
key. With that being said, the adversary still follows the FHE
scheme and does not deviate from it. This model also applies
to the case where a trusted server is compromised by malicious
third parties that have access to the server’s internal states.
λ denotes the desired security level of an encryption scheme.

In this work, we choose λ = 128 bits, which is considered to
be standard and secure for FHE applications. For the rest of
the TFHE scheme parameters, we use the default parameter
set as described in Section VIII of the TFHE paper [7].

III. RELATED WORKS

A. Privare-preserving Computing Solutions

To alleviate the privacy leakage concerns, many works in
the past have been proposed based on different cryptographic
primitives.
Hybrid HE-MPC (multi-party computation)-based frame-

works such as Gazzelle [11] and Cheetah [12] combine
two-party computation (2PC) and FHE to deliver fast deep
learning inference. While these works claim to have shorter
calculation times than pure FHE solutions, their performance is
frequently constrained by communication/network bottlenecks
between the two parties. Furthermore, they require clients to
be engaged whenever the noise of ciphertexts reaches a critical
point, which necessitates more computational resources on the
client’s part than pure-FHE-based solutions.
Pure FHE-based solutions have also been developed in

recent years. FHE libraries such as Microsoft SEAL [13],
HEAAN [6], OpenFHE [9], and Lattigo [14] target imple-
menting the primitives defined by the schemes and are not
end-to-end solutions for FHE application development.
To improve the programmability and provide higher abstrac-

tions of FHE libraries, FHE compilers such as EVA [15], [16]
and SEALion [17] have been proposed to compile high-level
programs to FHE primitives for the CKKS scheme. While
these compilers simplify the development of RLWE-based
FHE applications, their supported operations are also limited
by the underlying FHE schemes which usually only support

homomorphic polynomial operations. Complicated linear op-
erations such as convolution require additional manual engi-
neering to utilize the single-instruction-multiple-data (SIMD)
parallelism of the underlying FHE schemes. For non-linear
operations such as ReLU, existing works use either polynomial
approximations which usually require excessive multiplication
depth to achieve required accuracy [18], removing the non-
linear operations from the model [19], or replacing the non-
linear functions with linear functions such as replacing ReLU
with x2, which may hurt the accuracy of the model [20].
Besides compilers that support homomorphic polynomial

operations, compilers for FHE schemes that support homo-
morphic evaluations on a gate-level [3]–[5], [21] have also
been proposed to support more complex operations. These
compilers are the most closely related to PyTFHE and we
describe them in greater detail in the next subsection.
Hardware accelerators have also been proposed to bridge the

performance gap between FHE and plaintext evaluation, most
of which target accelerating CKKS-scheme-based programs
with deep multiplicative depth. F1 [22] is the first application-
specific integrated circuit accelerator (ASIC) targeting mainly
small-scale FHE applications. To better support CKKS pro-
grams with deeper multiplicative depth, CraterLake [23],
BTS [24], and ARK [25] have been proposed to provide
more efficient support for bootstrapping operations that are
necessary for deep neural network inference. MATCHA [26]
is the first ASIC accelerator targeting the TFHE scheme.

B. Compilers and Frameworks that Aid the Development and
Generation of TFHE Programs
Frameworks that are designed to program and execute

homomorphic encryption applications over the TFHE scheme
and other schemes that support boolean gates are the most
closely related to our proposed PyTFHE framework. We
describe three frameworks in detail (Google’s Transpiler [3],
Cingulata [4], and E3 [5]) and provide evaluations against
these frameworks in Section V.
Google’s TFHE Transpiler [3] is a framework that bridges

the gap between high-level abstractions and low-level gate
operations by taking a C program and producing an equiv-
alent TFHE-enabled C program. Transpiler is built on top of
XLS [27], Google’s open-source HLS (High-Level Synthesis)
toolchain that converts C programs into hardware description
languages. The hardware description language program is
turned into an intermediate representation (IR) of gates (i.e.,
AND, OR, and NOT gates) and the gates are mapped statically
to the API provided by the open-source TFHE library [10]
via code generation to generate a TFHE-enabled C program.
While Transpiler benefits from the HLS optimizations and the
higher abstraction level for ease-of-use provided by XLS, it
also has limitations such as being restricted to using C native
data types and libraries. XLS makes generating sophisticated
applications such as deep neural networks labor-intensive
because neural network models need to be constructed from
scratch in C. The execution backend of Transpiler recently
added an experimental interpreter that parses the IR and exe-

26

PyTorch

ChiselTorch

Neural Network Model

Yosys

PyTFHE
Assembler

CPU Backend GPU Backend

Neural Network Model in Verilog

Netlist of Logic Gates Existing Tools

PyTFHE’s Contribution

Distributed
CPU Backend

TFHE Program

Fig. 2. Compilation and execution flow of PyTFHE.

cutes the gates in multi-threaded mode. While the interpreter
provides a significant speedup over the code generator, it still
lacks support for more sophisticated parallel execution, which
limits its ability to support large-scale applications.

Cingulata [4] is a compiler toolchain that enables the
development of FHE applications using a Domain-Specific
Language (DSL). Cingulata supports two FHE schemes, the
Brakerski-Fan-Vercauteren (BFV) scheme [28] and the TFHE
scheme. Cingulata allows users to define encrypted integers
by providing a customized class that has overloaded basic
arithmetic operators. Despite Cingulata making integer arith-
metic easier, real-world applications tend to use more than just
basic integer operations. For example, it does not have built-in
support for floating-point arithmetic, which limits its ability
to implement any applications that utilize data types other
than integers. In addition, applying TFHE to more complex
applications such as neural network models requires significant
programming effort to construct the models using Cingulata’s
DSL from scratch.

Similar to Cingulata, Encrypt-Everything-Everywhere
(E3) [5] also supports the development of FHE applications
using a DSL. E3 supports the TFHE scheme by providing
a customized secure integer class and a set of arithmetic
operations such as addition, multiplication, and comparison.
However, besides limited support beyond integer arithmetics,
it only supports bits and 8-bit integers as encrypted variables
and hardcodes the gates for these types, which greatly limits
its flexibility and programmability.

PyTFHE provides high productivity when converting com-
plicated applications to TFHE programs using a PyTorch
interface. In addition, PyTFHE is higher performance than
these three compilers and frameworks because it employs an
interpreter (i.e., runtime linking of the TFHE library for fast
execution) as opposed to a code generator, and it provides a
distributed CPU backend as well as a GPU backend. While
Transpiler provides IR-level optimizations, it does not support
more sophisticated backends for distributed execution and is
unable to exploit the ample parallelism provided by TFHE
programs. Both Cingulata and E3 do not provide any gate-level
or boolean optimizations and have support for only single-
threaded TFHE program execution.

User’s Module Definition:
Conv2d(1, 1, 2, 1)

ChiselTorch

I1

Verilog Module:

* *
* *

I2 I3
I4 I5 I6
I7 I8 I9

K1K2
K3K4

++

+

O1O2
O3O4

……

…… ……

Gate Netlist:

PyTFHE Binary:

K1[0]

I1[0]
……

……

……

…

0x0000… 0x02417532Header

0xffff… 0xffff…Input I[0]

1 2XOR Gate
1 2AND Gate

0xffff… 0xffff…Input K[0]

Input Kernel

Output

PyTFHE Assembler

Yosys

1

2

3

……

……

0xf
0xf

0x6
0x1

…

Fig. 3. An example compilation flow of PyTFHE for a Convolution layer.

IV. THE PYTFHE FRAMEWORK

A. PyTFHE Overview
PyTFHE is an end-to-end high-performance framework for

compiling and executing TFHE programs. Figure 2 depicts
the compilation and execution flow of PyTFHE in its entirety.
PyTFHE implements a frontend called ChiselTorch that allows
users to write neural network models in PyTorch and automat-
ically generates the corresponding Verilog modules via a col-
lection of pre-built Chisel [1] modules. The generated Verilog
design is then synthesized into a netlist of gates with the help
of an augmented open-source Yosys [29] synthesis suite. The
synthesized netlist is converted into a compact PyTFHE binary
format using the PyTFHE Assembler. PyTFHE also provides
multiple backends, including a distributed CPU backend and
a GPU backend, to run the compiled TFHE program binary
efficiently. This framework provides high productivity by
generating TFHE neural network models for inference as well
as executing TFHE programs that are written using either
supported PyTorch primitives or arbitrary hardware designs
in Chisel without human intervention.
For the rest of this section, we use a running example of a

simple 2D convolutional layer that takes in one input channel,
outputs one convolutional feature, with a square kernel size
of two, at a stride of one, Conv2d(1,1,2,1), in a Con-
volutional Neural Network (shown in Figure 3) to illustrate
how PyTFHE turns a model layer declared in PyTorch into
a TFHE program ready for execution on a CPU or a GPU
platform step-by-step.

B. Converting PyTorch Models into Verilog Designs
Step 1 of the compilation flow takes in a model layer or a

model definition in PyTorch and generates a Verilog module
or modules using ChiselTorch. The ChiselTorch generator is
designed specifically for implementing neural network models
in the TFHE scheme. We focus on three desiderata of a

27

PyTorch MNIST Model
mnist_model = nn.Sequential (

nn.Conv2d (1, 1, 3, 1)
nn.ReLU ()
nn.MaxPool2d (3,1)
nn.Flatten ()
nn.Linear (576, 10)

)

ChiselTorch MNIST Model
val mnist_model = new.Sequential (Seq (

nn.Conv2d (1, 1, 3, 1)
nn.ReLU ()
nn.MaxPool2d (3,1)
nn.Flatten ()
nn.Linear (576, 10)

), dtype = Float(8,8)

(a) (b)

Fig. 4. A MNIST [30] neural network model declared in PyTorch (a) and
ChiselTorch (b). ChiselTorch also allows specific datatype selection for the
neural network model. For example, Float(8,8) declares a bfloat16 data
type with 8 bits for exponent and 8 bits for mantissa.

TABLE I
CHISELTORCH SUPPORTED PRE-BUILT NEURAL NETWORK PRIMITIVES

Neural Network Layers Primitive Tensor Operations
Conv1d/Conv2d matmul, dot
BatchNorm1d/BatchNorm2d ==, !=, >, <, >=, <=
Linear view, reshape, transpose, pad
ReLU sum, prod
MaxPool1d/AvgPool1d argmax, argmin
MaxPool2d/AvgPool2d +, -, *, /
Flatten max, min

compiler when we design the PyTFHE framework: correct-
ness, productivity, and performance. To ensure correctness,
we pre-build and validate model layers as Chisel modules
that are commonly used in a neural network model such as
convolution layers (e.g., Conv1d, Conv2d), pooling lay-
ers (e.g., MaxPool1d, MaxPool2d), non-linear activations
(e.g., ReLU), normalization layers (e.g., BatchNorm1d,
BatchNorm2d), and fully-connected layers (e.g., Linear).
To provide programmer productivity, ChiselTorch is built on

top of the Chisel hardware description language framework [1]
and provides API-level compatibility to the PyTorch deep
learning library [31] as shown in Figure 4. Unlike existing
TFHE frameworks [3]–[5], which require the users to write the
entire neural network model from scratch, ChiselTorch allows
the users to easily define a neural network model in a PyTorch-
like API. In addition, we exploit Chisel’s parameterizability
and allow users to specify neural network models’ input
channel size, output channel size, kernel size, and stride size
to name a few, similar to the PyTorch API. With the help
of the provided primitive tensor operations such as reshape
(reshape) and matmul (matmul), users may also implement
their own neural network layers that are not yet available as
pre-built modules in ChiselTorch. For example, the user may
implement custom attention layers by using the reshape and
matmul operations provided in our API. Table I shows a list
of available neural network model layers as well as tensor
operations supported by ChiselTorch.
PyTFHE is designed to maximize the performance of a

generated TFHE program. Recall that a TFHE program is a
DAG of gates (as described in Section II), and the execution
time of a TFHE program measures how long it takes to traverse
the DAG of gate evaluations. This means that the performance
of a TFHE program is determined by the number of gates
evaluated in a given implementation of TFHE primitives

0
127 66

0Total # of Gates
465 3 0

0x3FFF… 0xF0x3FFF…
INPUT 0 Gate Index Gate TypeINPUT 1 Gate Index

Header Inst
Input Inst
Gate Inst

0x3FFF… 0x3OUTPUT Gate IndexOutput Inst

Fig. 5. PyTFHE instruction encoding and binary format for fast TFHE
program execution.

given the same amount of time per gate. Like other FHE
schemes, TFHE requires all programs to be data-oblivious,
meaning that the control flow and memory accesses of the
program should not depend on the encrypted variables. This
prohibits any conditional branching or recursion. The data-
oblivious principle provides the opportunity to achieve the
most efficient implementation by translating the computation
DAGs into a purely fused combinatorial form. In contrast,
programs implemented with sequential logic require additional
gates for state retention and management, resulting in a higher
number of gates being evaluated and are thus less efficient.
In PyTorch, users have the option of selecting a data type

and precision to suit their needs. It is even more crucial to
be able to parameterize the data type of the neural network
when it comes to generating TFHE programs, since choosing
a cheaper data type may result in a reduction in the number
of gates by orders of magnitude. In ChiselTorch, data types
are not limited to conventional byte or word alignment be-
cause TFHE programs operate at the gate level. ChiselTorch
supports integer and fixed-point data types of arbitrary bit
widths as well as floating-point data types with arbitrary
bits of exponent and mantissa. For example, a SInt(7)
in ChiselTorch declares a signed integer data type, while a
Float(5, 11) data type declares a floating point number
with 5 bits of exponent and 11 bits of mantissa (effectively a
half-precision float). The flexibility of ChiselTorch’s data type
selection allows finer-grained control of quantization tradeoffs
(i.e., accuracy vs. performance), which subsequently results in
higher TFHE program performance.

C. Compiling Verilog Designs into PyTFHE Binaries

Step 2 uses an open-source synthesis tool suite Yosys to
obtain a netlist of gates from the combinational logic in Verilog
generated by ChiselTorch. The final step, Step 3 , assembles
a PyTFHE program binary from the gate netlist output using
the PyTFHE Assembler as shown in Figure 3.
We create a specific binary encoding for TFHE instructions

that allows representation of a large number of gates (262 to be
exact) and creates a sequential indexing scheme to “name” the
gates using their assigned indices. This gate indexing scheme
allows fast TFHE program DAG traversal and therefore fast
TFHE program execution.
There are four types of TFHE instructions: header, input,

gate, and output instructions; each instruction is 128 bits. The
encoding of these instructions are shown in Figure 5. Each
input or output gate has an assigned index of 62 bits. This
allows the TFHE program to have up to a total number of

28

Gate Netlist:

PyTFHE Binary:

B

A

0x0000… 0x02Header
0xffff… 0xffff…Input A

1 2
1 2

0xffff… 0xffff…

PyTFHE Assembler

Sum

Carry

Input B

0
1
2
3
4

XOR Gate
AND Gate

0xffff… 35
0xffff… 46

Output Sum
Output Carry

Two gates in total

Predecessors:
Input A’s index is 1
Input B’s index is 2

Output from the
AND gate with

index of 4

0xf
0xf
0x6
0x1
0x3
0x3

 XOR
Gate Type is
0110 (0x6)

Fig. 6. An example PyTFHE binary encoding of a half adder.

262 gates. Each gate type is encoded using four bits because
PyTFHE supports eleven different gates.
The first instruction in any PyTFHE binary is always a

header instruction which encodes the total number of gates
in the program. To encode the input signals of the TFHE
program, we use input instructions. Input instructions reserve
indices for the inputs. This sequential naming scheme allows
fast traversal of the TFHE program which consists of a DAG
of gates. All fields of any input instruction are set to all
ones except for their assigned indices. To encode gates and
their wiring connections, we use gate instructions. Each gate
has two inputs and they can either be input signals or gates
that generated these input signals (i.e., the current gate’s
predecessors in the DAG). Besides inputs, gate instructions
also record gate types. For each output signal, we use an output
instruction to record the gate that produced this output.
Figure 6 shows how a half adder netlist is encoded as a

PyTFHE binary. The first instruction is a header instruction
with the number of gates set to two since there are a total
of two gates in this netlist. The second and third instructions
are input instructions used to reserve the two indices for input
signals A (index 1) and B (index 2). We then encode the two
gates, XOR (index 3) and AND (index 4), in the half adder.
The XOR gate instruction encodes its two inputs A and B
with index 1 and 2 respectively. XOR’s gate type is encoded
as 0110. Outputs Sum and Carry are encoded with the gates
that generated them, index 3 and 4 respectively. The assembled
PyTFHE binary is then ready for backend execution.

D. Distributed CPU Backend

Fully Homomorphic Encryption provides the ability to
perform computations directly on encrypted data. Though it
is highly desirable to perform privacy-preserving computa-
tions such as FHE, the computation cost of executing FHE
programs is exorbitantly high, making it critical to have a
high-performance PyTFHE backend to execute and run TFHE
programs efficiently. The PyTFHE backend consists of the

Algorithm 1 TFHE Program DAG Traversal Algorithm
Require: T = (V,E) being a valid TFHE program directed acyclic graph

with k cycles.

for i = 1, 2, . . . , k do
I ← {v ∈ V |v is input node} ! input set
O ← {v ∈ V |v is output node} ! output set
G← V − I −O ! gate set
ready = I
finished = I
while V − finished $= ∅ do

! until all nodes are ready
C ← {v ∈ V |∀u→ v, u ∈ ready}

! find all nodes that are ready to compute
Compute (C − finished)

! submit compute job to distributed system
ready ← ready ∪ C
finished← finished ∪ C

end while
end for

0 5 10 15 20
Time (ms)

Communication Overhead = 0.094 %

Blind Rotation
Key Switching

Communication Overhead

Fig. 7. Profiling of a TFHE gate evaluation on a single core CPU.

open-source TFHE library [10], a scheduler, and an executor.
As described in Section III-B, there are several existing TFHE
backends [9], [10] that enable the execution of TFHE programs
on a single CPU core. However, none of them are able
to exploit the abundant parallelism in TFHE programs by
executing them in a distributed manner.
In our PyTFHE framework, we use a breadth-first search

(BFS)-based algorithm (shown in Algorithm 1) to traverse the
DAG of a TFHE program and to exploit the parallelism in the
DAG. The algorithm starts traversing from the input nodes
where the values are already known. When a node is visited,
the traversing algorithm is able to guarantee that the parents
of the node are already computed, so that the current node
being visited can be computed. After all the nodes have been
traversed and computed, the algorithm will return the value of
the output nodes.
To implement the PyTFHE backend, we wrap the TFHE

library [10] into a python library with pybind11 [32] so
that TFHE basic operations such as keypair generation, ci-
phertext encryption and decryption, and bootstrapped gate
computations (e.g., bootstrapped-NAND, bootstrapped-XOR)
are exposed to the user. We then use the Ray [33] framework
to implement the distributed execution of TFHE programs
in PyTFHE. Ray is a distributed execution framework that
provides a unified API for distributed execution of Python
functions and actors. At the beginning of the execution, the
PyTFHE framework will create a Ray cluster with multiple
cores and multiple nodes whose numbers are specified by the
user. Then, the PyTFHE framework will create a Ray actor on
each processor core in the cluster. After that, the public key

29

CPU
GPU

Traverse TFHE Program (DAG)
Build Dependency Graph

MemCpy Host2Device

Single TFHE Gate Exec
MemCpy Device2Host

Load TFHE Program

Blocked Blocked Blocked Blocked

Overhead of Function Calls and cudaDeviceSynchronize() Calls

Fig. 8. Execution time breakdown of the GPU backend using cuFHE.

will be broadcasted to all the cores in the cluster. When all the
actors are launched and have received the public key required
for computing TFHE gates, PyTFHE will use Algorithm 1 to
traverse the DAG of the TFHE program and the computation
jobs are submitted to the Ray actors.
In Figure 7, we show the profiling results of the execution

of a single TFHE gate. We choose to submit each gate as a
separate Ray task to the distributed system because the TFHE
programs are mainly bottlenecked by computation rather than
communication. When a gate is computed, both the input and
output ciphertexts require communication. Since a piece of
ciphertext in the TFHE context is only 2.46 KB in size, the
communication overhead created by submitting each gate as
a separate Ray task contributes to only 0.094% of the total
runtime, which is negligible compared to the computation cost
of the gate.
The distributed execution of TFHE programs significantly

reduces the execution time of TFHE programs. More evalua-
tion results can be found in Section V.

E. GPU Backend
GPU is a powerful computing platform that can be used

to accelerate many applications. It is especially well-suited
for executing TFHE programs because of its large amount
of SIMD pipelines and the massive parallelisms provided by
its SIMT execution model. TFHE programs can utilize the
parallelism provided by GPUs from two perspectives. First,
each bootstrapped-Gate (or gate for simplicity) evaluation
consists of highly vectorizable operations such as Number
Theoretic Transform (NTT) and key-switching operations
while GPU’s micro-architecture is designed and optimized for
vector operations. Second, real-world TFHE programs usually
consist of an enormous number of gate evaluations. These gate
evaluations can be executed in parallel as long as there’s no
dependency between them. GPUs usually have a plethora of
streaming multiprocessors (SMs) that are capable of executing
multiple TFHE gates in parallel.
While CPU backends have been widely adopted to execute

the TFHE programs [3]–[5], [34], we are the first toolchain that
provides a GPU backend to offer significant speedup for TFHE
program execution. Our GPU backend is built on top of the
CUDA kernels that evaluate BootstrappedGate, the gate
primitive from the cuFHE library [2] and uses batch scheduling
based on CUDA Graphs [35] to achieve high performance.
The TFHE libraries designed for CPU platforms [9], [10]

usually provide APIs at the granularity of single logic gate

CPU
GPU

Build Dependency Graph
Invoke Batch Execution

Divide Program into Batches
Initialize Batch Execution

Batch Execution
Clean Up

Load TFHE Program

Overhead

Fig. 9. Execution time breakdown of the GPU backend using PyTFHE.

evaluation. Following a similar approach, cuFHE also provides
function calls for individual gate evaluation. However, while
such gate-level API design provides an intuitive interface for
TFHE program developers, such design is not favorable to
achieving efficient GPU execution and fully utilizing GPU’s
parallelism.
Figure 8 depicts the execution time breakdown when ex-

ecuting four TFHE gates using the cuFHE library. During
each cuFHE gate evaluation, the input ciphertext is first copied
from the CPU (host) memory to the GPU (device) memory,
then a GPU kernel is launched to perform the gate evaluation.
After the evaluation completes, the result is copied back to
the host memory regardless of whether the ciphertext can be
reused in later gate evaluations. During the execution of a
GPU kernel, the CPU thread is blocked and cannot perform
any other computation.
In order to utilize more SMs simultaneously, cuFHE allows

ciphertexts to be batched and evaluated in a vectorized fashion.
However, this type of batching does not allow interdependent
ciphertexts or mixed types of gate evaluations to be batched.
Real-world TFHE programs, however, usually contain lots
of interdependent operations with different types of gates,
limiting the size of each cuFHE batch. In addition, the CPU
thread must wait until all gate evaluations within a batch have
finished before processing the next batch, which further lowers
the utilization of the GPU resources, making cuFHE inefficient
at executing TFHE programs.
Inspired by the recent advances in the ML community to

use kernel fusion to reduce data transfer and work submission
overheads [36], [37], we utilize CUDA Graphs, an NVIDIA
kernel launcher, to define a series of operations before the
actual execution and fuse them as a single operation rather
than a sequence of individually-launched operations.With this
approach, the batch size is now primarily determined by the
available GPU memory. CUDA Graphs allow interdependen-
cies between gates to be defined within a batch, enabling GPUs
to perform more computations at once. Each batch is a sub-
directed-acyclic-graph (sub-DAG) of the entire TFHE program
that contains up to around hundreds of thousands of nodes in
our GPU execution backend. Unlike the API design flavor in
the cuFHE framework [2] where the CPU thread must wait
for each API call to finish, we made an essential modification
to allow the current batch execution on the GPU and the next
batch construction on the CPU to proceed in parallel, further
reducing dependency management overheads. The workflow

30

TABLE II
CONFIGURATION OF THE DISTRIBUTED CPU BENCHMARKING PLATFORM

Host Processor 2 Intel Xeon Gold 5215 2.5GHz (20C/40T)
Memory 4 32GB 2933 MHz DDR4
Network Interface Intel Corporation I350 Gigabit NIC

for PyTFHE GPU execution backend is shown in Figure 9.

V. EVALUATION

A. Evaluation of PyTFHE Backends on VIP-Bench and Neural
Networks

VIP-Bench [38] is a benchmark suite designed for privacy-
enhanced computation framework evaluation. A wide range
of 18 benchmarks is provided in VIP Bench, including linear
arithmetic functions such as Dot-Product, iterative approxima-
tion algorithms such as Eulers’s Approximation, and real-world
applications such as MNIST Network and Roberts-Cross Edge
Detection. To evaluate the performance of PyTFHE backends,
we implemented the benchmarks in the Chisel Hardware
Description Language [1] with the exception that the MNIST
network benchmark is implemented with ChiselTorch. We also
implemented two larger MNIST-CNN benchmarks, with two
and three convolutional kernels respectively. We refer to the
three MNIST-CNN benchmarks asMNIST S (the one included
in VIP-Bench), MNIST M, and MNIST L based on their size.
To further evaluate the performance over more complicated

neural network structures, we additionally implemented self-
attention layers, a key component in the BERT (Bidirectional
Encoder Representations from Transformers) models [39].
Self-attention enables BERT to effectively capture long-range
dependencies between tokens in the input context, resulting
in state-of-the-art performance on a wide range of natu-
ral language processing tasks. The implementation of self-
attention layers also demonstrates the flexibility of ChiselTorch
to support non-native complicated neural network structures
with the provided primitives. We implemented two versions of
self-attention layers. Based on the input sequence length and
hidden size, we refer to the self-attention layers as Attention S
(for a hidden dimension of 32) and Attention L (for a hidden
dimension of 64). The benchmarks are compiled using the
PyTFHE flow described in Section IV. The generated TFHE
programs are evaluated using the high-performance distributed
CPU backend implemented with Ray as described in Sec-
tion IV-D. We use a medium-sized server for our experiments
(Table II).
The evaluation results of PyTFHE’s distributed CPU back-

end are shown in Figure 10. To see how well our distributed
CPU backend scales, we first run multiple independent single-
threaded dummy TFHE programs with no dependencies be-
tween the gates to saturate the node’s CPU usage and measure
the maximum throughput of processing TFHE gates. The
throughput obtained from independent single-threaded TFHE
programs indicates the ideal throughput of the CPU server
platform. The results show that PyTFHE’s distributed CPU
backend scales nearly perfectly for large-scale benchmarks

H
am

m
in

gD
is

t
Eu

le
rs

A
pp

ro
x

St
rin

gC
ap

Su
m

3D
Pe

rc
ep

tro
n1

0
Pa

rr
an

do
Li

ne
ar

R
eg

K
ep

le
r

Po
ly

R
eg

B
ito

ni
cS

or
te

r
N

R
So

lv
er

Tr
ia

ng
le

R
ob

er
ts

C
ro

ss
In

tF
FT

Pe
rc

ep
tro

n1
00

X
G

ra
di

en
t

LD
A

A
tte

nt
io

n_
S

M
N

IS
T_

S
M

N
IS

T_
M

A
tte

nt
io

n_
L

M
N

IS
T_

L

0

20

40

60

Sp
ee

du
p

4 Nodes Ideal speedup
1 Node Ideal speedup
4 nodes
1 node

Fig. 10. PyTFHE Distributed CPU vs. Single-Threaded CPU on VIP Bench
The benchmark results are normalized to the single-threaded CPU backend.
The benchmarks are sorted by the number of gates in the TFHE program in
ascending order.

TABLE III
CONFIGURATION OF THE GPU BENCHMARKING PLATFORM

Host Processor 16C/24T Intel Core i9-12900K 4.90 GHz
Memory 4 32GB 3600 MHz DDR4
GPU NVIDIA RTX A5000 24G, 4090 24G

such as the three MNIST networks. It achieved a speedup of
17.4 (the ideal speedup is 18) compared to the single-threaded
CPU backend on a single node and a speedup of 60.5 (the ideal
speedup is 72) on a cluster with four nodes.
For smaller benchmarks such as Hamming Distance and

Euler’s Constant Approximation, however, the benefit of a
distributed system is not as obvious. Two reasons can be
identified. First, the runtime of smaller benchmarks is dom-
inated by the overhead of thread creation, data transfer, and
synchronization of the distributed system. Second, some of the
small benchmarks such as Newton-Raphson Solver (NRSolver)
have a mostly serial workflow and are not easily parallelizable.
As such, it is difficult for these mostly serial benchmarks to
fully utilize the parallelism of the distributed system.
We also assessed the performance of our GPU backend

using the above benchmarks. We use cuFHE [2], the state-
of-the-art GPU TFHE library implementation, as the GPU
baseline for comparison. The hardware configuration of the
GPU platform is listed in Table III. Both the NVIDIA RTX
A5000 GPU and the NVIDIA RTX 4090 GPU are evaluated.
PyTFHE’s GPU backend achieves up to 61.5× better perfor-
mance compared to the baseline implemented with cuFHE
library shown in Figure 11.
We used NVIDIA Nsight Compute profiler to analyze

benchmarks that had modest speedups such as Parrando,
Eulers’s Approximation, and NRSolder. We observed that the
runtime of these benchmarks are dominated by the serial
portion of the code and are not easily parallelizable, preventing
them from fully exploiting GPU’s SMs and the ample parallel
execution SMs provide.

B. Comparing PyTFHE with Google’s Transpiler
In this subsection, we present the evaluations of Google’s

Transpiler and PyTFHE. We first describe the experimental

31

H
am

m
in

gD
is

t
Eu

le
rs

A
pp

ro
x

St
rin

gC
ap

Su
m

3D
Pe

rc
ep

tro
n1

0
Pa

rr
an

do
Li

ne
ar

R
eg

K
ep

le
r

Po
ly

R
eg

B
ito

ni
cS

or
te

r
N

R
So

lv
er

Tr
ia

ng
le

R
ob

er
ts

C
ro

ss
Pe

rc
ep

tro
n1

00
X

G
ra

di
en

t
LD

A
In

tF
FT

M
N

IS
T_

S
M

N
IS

T_
M

M
N

IS
T_

L
A

tte
nt

io
n_

S
A

tte
nt

io
n_

L

10 1

100

101

102

Sp
ee

du
p

CuFHE A5000 CuFHE 4090 PyTFHE A5000 PyTFHE 4090

Fig. 11. PyTFHE GPU vs. cuFHE on VIP-Bench and neural networks

G
T+

G
C

G
T+

Py
T

C
PU

G
T+

Py
T

G
PU

Py
T+

Py
T

C
PU

Py
T+

Py
T

G
PU

10 1

101

103

Sp
ee

du
p

Single Core
1 Node

4 Nodes

Fig. 12. Transpiler vs. PyTFHE on MNIST.

setup and then present the results.

Experimental Methodology Both Transpiler and PyTFHE
are modular and generate intermediate program files, which
makes it possible to study the performance impact of different
framework components. We use different combinations of the
frontends and backends in our experiments to assess 1) how
well the PyTFHE framework can generate optimized binaries
compared to the Transpiler’s XLS frontend, and 2) how well
the PyTFHE distributed CPU and GPU backends perform
compared to the Transpiler code generation backend. For all
the experiments in this subsection, the baseline is the Google
Transpiler (frontend and backend).
For the first experiment, we builtMNIST S using Transpiler.

GT+GC denotes using Google Transpiler XLS frontend and
Google Transpiler code generation backend to generate the
TFHE program. The program is then run on a single-core
CPU. This experiment generates our baseline performance. For
the second experiment, we tested the frontend from Google
Transpiler and our PyTFHE execution backend. We built the
same MNIST S model and used Google Transpiler to compile
and optimize the model to get the most optimized XLS IR.
We then converted the XLS IR to PyTFHE binary format that
preserves the same dataflow structure. The converted PyTFHE
binary is evaluated using PyTFHE backend on both distributed
CPU and GPU backends (denoted as GT+PyT CPU and
GT+PyT GPU).For the third experiment, we use the MNIST S
model generated by our ChiselTorch frontend and execute with
the PyTFHE backend. We performed the evaluation on both
distributed CPU and GPU platforms (denoted as PyT+PyT
CPU and PyT+PyT GPU).

Experimental Results Transpiler comparison results are
shown in Figure 12. The end-to-end solution of Google Tran-
spiler took days to evaluate the MNIST S model, which makes
it impractical for real-world FHE deep learning inference.
For the same IR generated and optimized by Transpiler, our
distributed CPU backend achieves 52× better performance on
four nodes. Our GPU execution backend achieves 69×–89×
better performance on NVIDIA RTX A5000 and 4090 GPUs
respectively. The speedup of MNIST S inference improves

102 103 104 105 106 107

Runtime (s)

Transpiler
Cingulata

E3
PyTFHE (Single Core)

PyTFHE (1 node)
PyTFHE (4 nodes)
PyTFHE (A5000)

PyTFHE (4090)

1403442.37 s
92010.16 s

75498.78 s
49337.39 s

3279.40 s
937.23 s

694.84 s
344.78 s

Fig. 13. PyTFHE vs Existing TFHE Frameworks Runtime

0 20 40 60 80
Number of Gates (Millions)

Transpiler
Cingulata

E3
PyTFHE

68.8M
4.5M

3.7M
2.4M

Conv2D
Flatten

Linear Layer
MaxPool2D

ReLU

Fig. 14. Gate Distribution of MNIST Network

even further when we use the TFHE program generated by
ChiselTorch as shown in Table IV. Our distributed CPU
backend and GPU backends achieve speedups ranging from
28 to 3369 compared to Google Transpiler.
These results show that our distributed CPU and GPU

backends can achieve a significant speedup by utilizing the
massive parallelism of multiple CPUs and high-performance
GPUs. It also shows that our ChiselTorch generates more opti-
mized TFHE programs forMNIST S than Transpiler. Together,
PyTFHE allows FHE application developers to build more
optimized DNN applications with significantly less effort and
achieves much better TFHE program execution performance.

C. Comparing PyTFHE with Cingulata and E3

As introduced in Section III, Cingulata and E3 are two
DSL-based frameworks that support TFHE scheme. We built
the same MNIST S model for both Cingulata and E3 and

32

TABLE IV
SPEEDUP OF PYTFHE OVER E3, CINGULATA, AND TRANSPILER

E3 Cingulata Transpiler
PyTFHE Single Core 1.5 1.8 28.4
PyTFHE 1 Node 23.0 28.1 427.9
PyTFHE 4 Nodes 80.6 98.2 1497.4
PyTFHE A5000 GPU 108.7 132.4 2019.8
PyTFHE 4090 GPU 218.9 266.86 4070.54

compared their TFHE program execution runtime. The results
are shown in Figure 13 and Table IV1. For completeness,
we also include the runtime for Transpiler and single-core
PyTFHE.
We further analyze the number of gates generated by each

framework in Figure 14. Our PyTFHE ChiselTorch frontend
generates TFHE programs with the least number of gates
among these four frameworks, which is 65.3% of the number
of gates generated by Cingulata and 53.6% of the number
of gates generated by E3. Amongst all the frameworks we’ve
studied, Google Transpiler generates a significantly larger pro-
gram. We believe the reason for Transpiler’s poor performance
is due to its converting a C/C++ program that is in total order-
ing to a TFHE program that evaluates gates in partial ordering.
This ordering mismatch may prevent Transpiler from detecting
parallelism and performing optimizations, and hence results
in subpar performance. For example, all other frameworks
can detect that the Flatten layer in a neural network model
performs a tensor reshape function and can be optimized into
wiring connections while Transpiler still emitted gates for the
Flatten layer.

VI. CONCLUSION

In conclusion, PyTFHE is a framework that provides state-
of-the-art performance and an easy-to-use interface for imple-
menting applications in the TFHE scheme. We demonstrate
the effectiveness of PyTFHE by benchmarking it on the
VIP-Bench benchmark suite. We also implemented privacy-
preserving MNIST image classification applications and self-
attention layers and evaluated their performance on multiple
backends of PyTFHE. By comparing the performance of
PyTFHE with other end-to-end TFHE-supported frameworks,
we show that PyTFHE achieves orders of magnitude better
performance.

REFERENCES

[1] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing hardware in a
scala embedded language,” in DAC Design Automation Conference 2012,
2012, pp. 1212–1221.

[2] G. S. Cetin, W. Dai, B. Opanchuk, and Kitsu, “cuFHE: CUDA-
accelerated Fully Homomorphic Encryption Library,” 2018. [Online].
Available: https://github.com/vernamlab/cuFHE

[3] S. Gorantala, R. Springer, S. Purser-Haskell, W. Lam, R. Wilson,
A. Ali, E. P. Astor, I. Zukerman, S. Ruth, C. Dibak et al., “A general
purpose transpiler for fully homomorphic encryption,” arXiv preprint
arXiv:2106.07893, 2021.

1The runtime of Cingulata, E3, and Transpiler are estimated using the gate
count divided by the average throughput of the TFHE library running on a
single CPU core.

[4] S. Carpov, P. Dubrulle, and R. Sirdey, “Armadillo: A compilation
chain for privacy preserving applications,” in Proceedings of the 3rd
International Workshop on Security in Cloud Computing, ser. SCC ’15.
New York, NY, USA: Association for Computing Machinery, 2015, pp.
13–19. [Online]. Available: https://doi.org/10.1145/2732516.2732520

[5] E. Chielle, O. Mazonka, H. Gamil, N. G. Tsoutsos, and M. Maniatakos,
“E3: A framework for compiling c++ programs with encrypted
operands,” Cryptology ePrint Archive, Paper 2018/1013, 2018,
https://eprint.iacr.org/2018/1013. [Online]. Available: https://eprint.iacr.
org/2018/1013

[6] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in International conference
on the theory and application of cryptology and information security.
Springer, 2017, pp. 409–437.

[7] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Tfhe: fast
fully homomorphic encryption over the torus,” Journal of Cryptology,
vol. 33, no. 1, pp. 34–91, 2020.

[8] L. Ducas and D. Micciancio, “Fhew: bootstrapping homomorphic en-
cryption in less than a second,” in Annual international conference on
the theory and applications of cryptographic techniques. Springer,
2015, pp. 617–640.

[9] A. A. Badawi, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli,
N. Genise, S. Halevi, H. Hunt, A. Kim, Y. Lee, Z. Liu,
D. Micciancio, I. Quah, Y. Polyakov, S. R.V., K. Rohloff, J. Saylor,
D. Suponitsky, M. Triplett, V. Vaikuntanathan, and V. Zucca, “Openfhe:
Open-source fully homomorphic encryption library,” Cryptology
ePrint Archive, Paper 2022/915, 2022, https://eprint.iacr.org/2022/915.
[Online]. Available: https://eprint.iacr.org/2022/915

[10] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE:
Fast fully homomorphic encryption library,” August 2016,
https://tfhe.github.io/tfhe/.

[11] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “{GAZELLE}:
A low latency framework for secure neural network inference,” in 27th
USENIX Security Symposium (USENIX Security 18), 2018, pp. 1651–
1669.

[12] B. Reagen, W. Choi, Y. Ko, V. T. Lee, G. Wei, H. S. Lee, and
D. Brooks, “Cheetah: Optimizations and methods for privacypreserving
inference via homomorphic encryption,” CoRR, vol. abs/2006.00505,
2020. [Online]. Available: https://arxiv.org/abs/2006.00505

[13] “Microsoft SEAL (release 4.0),” https://github.com/Microsoft/SEAL,
Mar. 2022, microsoft Research, Redmond, WA.

[14] C. Mouchet, J.-P. Bossuat, J. Troncoso-Pastoriza, and J. Hubaux, “Lat-
tigo: A multiparty homomorphic encryption library in go,” in WAHC
2020–8th Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, 2020.

[15] R. Dathathri, B. Kostova, O. Saarikivi, W. Dai, K. Laine, and M. Musu-
vathi, “Eva: An encrypted vector arithmetic language and compiler
for efficient homomorphic computation,” in Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2020, pp. 546–561.

[16] S. Chowdhary, W. Dai, K. Laine, and O. Saarikivi, “Eva improved:
Compiler and extension library for ckks,” in Proceedings of the
9th on Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, ser. WAHC ’21. New York, NY, USA: Association
for Computing Machinery, 2021, pp. 43–55. [Online]. Available:
https://doi.org/10.1145/3474366.3486929

[17] T. van Elsloo, G. Patrini, and H. Ivey-Law, “Sealion: A frame-
work for neural network inference on encrypted data,” arXiv preprint
arXiv:1904.12840, 2019.

[18] J. Lee, E. Lee, J.-W. Lee, Y. Kim, Y.-S. Kim, and J.-S. No, “Precise
approximation of convolutional neural networks for homomorphically
encrypted data,” arXiv preprint arXiv:2105.10879, 2021.

[19] D. Comi, “Herbert: a privacy-preserving natural language processing
solution for text classification,” 2021.

[20] A. Al Badawi, L. Hoang, C. F. Mun, K. Laine, and K. M. M.
Aung, “Privft: Private and fast text classification with homomorphic
encryption,” IEEE Access, vol. 8, pp. 226 544–226 556, 2020.

[21] D. W. Archer, J. M. Calderón Trilla, J. Dagit, A. Malozemoff,
Y. Polyakov, K. Rohloff, and G. Ryan, “Ramparts: A programmer-
friendly system for building homomorphic encryption applications,” in
Proceedings of the 7th ACM Workshop on Encrypted Computing &
Applied Homomorphic Cryptography, 2019, pp. 57–68.

[22] A. Feldmann, N. Samardzic, A. Krastev, S. Devadas, R. Dreslinski,
K. Eldefrawy, N. Genise, C. Peikert, and D. Sanchez, “F1: A fast and

33

https://github.com/vernamlab/cuFHE
https://doi.org/10.1145/2732516.2732520
https://eprint.iacr.org/2018/1013
https://eprint.iacr.org/2018/1013
https://eprint.iacr.org/2018/1013
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
https://arxiv.org/abs/2006.00505
https://github.com/Microsoft/SEAL
https://doi.org/10.1145/3474366.3486929

programmable accelerator for fully homomorphic encryption (extended
version),” arXiv preprint arXiv:2109.05371, 2021.

[23] N. Samardzic, A. Feldmann, A. Krastev, N. Manohar, N. Genise,
S. Devadas, K. Eldefrawy, C. Peikert, and D. Sanchez, “Craterlake: a
hardware accelerator for efficient unbounded computation on encrypted
data.” in ISCA, 2022, pp. 173–187.

[24] S. Kim, J. Kim, M. J. Kim, W. Jung, J. Kim, M. Rhu, and J. H. Ahn,
“Bts: An accelerator for bootstrappable fully homomorphic encryption,”
in Proceedings of the 49th Annual International Symposium on Com-
puter Architecture, 2022, pp. 711–725.

[25] J. Kim, G. Lee, S. Kim, G. Sohn, M. Rhu, J. Kim, and J. H. Ahn, “Ark:
Fully homomorphic encryption accelerator with runtime data generation
and inter-operation key reuse,” in 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2022, pp. 1237–
1254.

[26] L. Jiang, Q. Lou, and N. Joshi, “Matcha: A fast and energy-efficient
accelerator for fully homomorphic encryption over the torus,” arXiv
preprint arXiv:2202.08814, 2022.

[27] Google, “Xls: Accelerated hw synthesis,” 2020. [Online]. Available:
https://github.com/google/xls

[28] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” Cryptology ePrint Archive, Paper 2012/144, 2012,
https://eprint.iacr.org/2012/144. [Online]. Available: https://eprint.iacr.
org/2012/144

[29] C. Wolf, J. Glaser, and J. Kepler, “Yosys-a free verilog synthesis suite,”
2013.

[30] L. Deng, “The mnist database of handwritten digit images for machine
learning research [best of the web],” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141–142, 2012.

[31] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, PyTorch: An Imperative Style, High-
Performance Deep Learning Library. Red Hook, NY, USA: Curran
Associates Inc., 2019.

[32] W. Jakob, J. Rhinelander, and D. Moldovan, “pybind11–seamless oper-
ability between c++ 11 and python,” URL: https://github. com/pybind/py-
bind11, 2017.

[33] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and I. Stoica, “Ray: A
distributed framework for emerging ai applications,” 2017. [Online].
Available: https://arxiv.org/abs/1712.05889

[34] C. Gouert and N. G. Tsoutsos, “Romeo: Conversion and evaluation of
hdl designs in the encrypted domain,” in 2020 57th ACM/IEEE Design
Automation Conference (DAC), 2020, pp. 1–6.

[35] “CUDA C++ Programming Guide,” https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#cuda-graphs, 2022, [Accessed
12-Dec-2022].

[36] A. Ivanov, N. Dryden, T. Ben-Nun, S. Li, and T. Hoefler,
“Data movement is all you need: A case study on optimizing
transformers,” in Proceedings of Machine Learning and Systems,
A. Smola, A. Dimakis, and I. Stoica, Eds., vol. 3, 2021, pp.
711–732. [Online]. Available: https://proceedings.mlsys.org/paper/2021/
file/c9e1074f5b3f9fc8ea15d152add07294-Paper.pdf

[37] X. Wang, Y. Wei, Y. Xiong, G. Huang, X. Qian, Y. Ding, M. Wang, and
L. Li, “Lightseq2: Accelerated training for transformer-based models
on gpus,” 2021. [Online]. Available: https://arxiv.org/abs/2110.05722

[38] L. Biernacki, M. Z. Demissie, K. B. Workneh, G. B. Namomsa,
P. Gebremedhin, F. A. Andargie, B. Reagen, and T. Austin, “Vip-
bench: A benchmark suite for evaluating privacy-enhanced computation
frameworks,” in 2021 International Symposium on Secure and Private
Execution Environment Design (SEED), 2021, pp. 139–149.

[39] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” 2019.

34

https://github.com/google/xls
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://arxiv.org/abs/1712.05889
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-graphs
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-graphs
https://proceedings.mlsys.org/paper/2021/file/c9e1074f5b3f9fc8ea15d152add07294-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/c9e1074f5b3f9fc8ea15d152add07294-Paper.pdf
https://arxiv.org/abs/2110.05722

