
ProSE: The Architecture and Design of a Protein Discovery
Engine

Eyes Robson∗
University of California, Berkeley

Berkeley, California, USA
eyes.robson@berkeley.edu

Ceyu Xu∗
Duke University

Durham, North Carolina, USA
ceyu.xu@duke.edu

Lisa Wu Wills
Duke University

Durham, North Carolina, USA
lisa@cs.duke.edu

ABSTRACT
Protein language models have enabled breakthrough approaches
to protein structure prediction, function annotation, and drug dis-
covery. A primary limitation to the widespread adoption of these
powerful models is the high computational cost associated with
the training and inference of these models, especially at longer
sequence lengths. We present the architecture, microarchitecture,
and hardware implementation of a protein design and discovery ac-
celerator, ProSE (Protein Systolic Engine). ProSE has a collection of
custom heterogeneous systolic arrays and special functions that pro-
cess transfer learning model inferences efficiently. The architecture
marries SIMD-style computations with systolic array architectures,
optimizing coarse-grained operation sequences across model layers
to achieve efficiency without sacrificing generality. ProSE performs
Protein BERT inference at up to 6.9× speedup and 48× power effi-
ciency (performance/Watt) compared to one NVIDIA A100 GPU.
ProSE achieves up to 5.5 × (12.7×) speedup and 173× (249×) power
efficiency compared to TPUv3 (TPUv2).

CCS CONCEPTS
•Computer systems organization→ Special purpose systems;
Neural networks; Heterogeneous (hybrid) systems; Systolic arrays; •
Computing methodologies → Natural language processing;
• Applied computing→ Computational biology.

KEYWORDS
Accelerators, Neural Networks, Transformers, Domain-Specific Ar-
chitecture, NLP, Protein Design

ACM Reference Format:
Eyes Robson, Ceyu Xu, and Lisa Wu Wills. 2022. ProSE: The Architecture
and Design of a Protein Discovery Engine. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’22), February 28 – March 4, 2022, Lausanne,
Switzerland. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3503222.3507722

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9205-1/22/02. . . $15.00
https://doi.org/10.1145/3503222.3507722

1

10

100

0 200

400

600

800

1000

1200

1400

1600

1800

2000

2200

of

 In
fe

re
nc

es
/s

ec
/W

at
t

Input Sequence Length (Number of Tokens)

BERT-Style Model Inference Power Efficiency

A100 GPU
TPUv2
TPUv3
ProSE

Protein BERT Models:

~300-2000+ Tokens

BERT
Language
Models:

~30-80 Tokens

Figure 1: BERT-style model inference efficiency (number of
inferences per second per Watt) decreases dramatically as
input sequence length increases. For short input sequences,
representative of human language BERT, ProSE is able to
obtain one order of magnitude better efficiency than GPU
and TPU systems. As input sequence length passes 300 to-
kens, representing Protein BERT models, commodity plat-
forms fail to perform >1 inference/sec/Watt2, necessitating
the need for architectural innovation.

1 INTRODUCTION
Recent innovations in Natural Language Processing (NLP) enable
powerful deep learning algorithms to accurately predict both experi-
mental protein structure [8, 45] and drug-target interactions [43, 53],
both of which can cut down the extraordinary costs (∼$80 billion per
year), failure rate (∼90%), and lab-to-market average timeline of 12
years for drug discovery and validation [13]. These bio-repurposed
NLP models, especially those employing BERT-style model struc-
tures [11], produce inferences much more speedily than wetlab
experiments, and much more accurately than traditional computa-
tional biology algorithms1, increasing the quality of drug candidates
in expensive human trials. Unfortunately, commodity accelerated
platforms such as the latest GPU and TPU systems lack power
efficiency when executing BERT-style models. Further, the perfor-
mance of these systems is optimized primarily for either non-NLP
models or NLP models that target human language with short input
lengths, while protein engineering and discovery requires longer
lengths.

1For the specific case study of CYP450 mentioned in “Hunting for New Drugs with
AI” [13], the prediction accuracy of CYP450-related toxicity went from ∼66% to 95%
when it is AI-assisted.

655

https://orcid.org/0000-0001-7159-0974
https://doi.org/10.1145/3503222.3507722
https://doi.org/10.1145/3503222.3507722
https://doi.org/10.1145/3503222.3507722

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Eyes Robson, Ceyu Xu, and Lisa Wu Wills

A plethora of specialized accelerators deliver exceptional per-
formance and efficiency when performing inferences on CNNs [6,
7, 40] and DNNs [14, 20, 21, 26, 37]. However, few works have
explored accelerating the newly developed BERT-style models [9,
11, 27, 30, 48, 51]. These models exhibit fundamentally different
computational patterns to CNNs, and CNN accelerators dedicate sig-
nificant resources to accelerate convolutional filters, something not
present in most Transformers. As such, these architectures cannot
efficiently predict protein binding affinity for drug discovery.

Of architectures handling Transformers [25], few compete with
modern tensor-core-based GPUs or systolic-array-based TPUs and
no accelerators attempt long length inputs to date. Figure 1 depicts
the impact of input sequence length in tokens of BERT-style Trans-
former inference efficiency. For language models, a token is a word
or subword and a sentence is typically 30–80 tokens. For protein
models, an amino acid is a token and a protein is an input sequence
of typically 300+ tokens. At these longer input lengths, the pro-
portions of the operation mixes change, rendering GPU or TPU
platforms far less efficient than performing the same tasks with
short input lengths. Further, Transformers occasionally require
matrix multiplications with smaller matrices than the TPU uses
(128x128 systolic arrays) but larger matrices than what the GPU ten-
sor core optimizes (4x4x8 tensors), leaving the TPUs underutilized
and the GPUs less performant.

Besides GPUs and TPUs, few accelerators target BERT-style mod-
els [18, 19] and these accelerators only accelerate a portion of the
model such as the attention mechanism, leaving large portions
to be executed on commodity platforms. Sparse GEMM accelera-
tors [42] require significant sparsity and do not accelerate large
portions of Transformer models, while other systolic-array-based
accelerators [15] do not accelerate Transformer models at all.

We design and evaluate a systolic engine targeting BERT-style
model inference optimized for protein-size inputs, called ProSE.
ProSE is a multi-threaded heterogeneous software-hardware co-
designed system that contains a collection of heterogeneous systolic
arrays and special functions, with each type of systolic array capa-
ble of executing a prominent operation sequence for a BERT-style
model in dataflow fashion, such as matrix multiplication followed
by matrix addition or GELU function. ProSE operates on stream-
ing input data using an output-stationary systolic array with no
provision for specialized intermediate data storage such as a local
scratchpad on the accelerator. Instead ProSE uses the accumula-
tor register within each multiply-accumulate unit as intermediate
storage to reduce the memory requirements of large AI models [28].

This paper makes the following contributions:
• A performance-, power-, and area-efficient protein discovery
systolic engine called ProSE. Using a collection of hetero-
geneous streaming systolic arrays with varying sizes and
functionalities, ProSE demonstrates an architecture that is
capable of executing matrix multiplications, SIMD ALU oper-
ations, and special activation functions efficiently, providing
two to three orders of magnitude better efficiency compared
to the latest GPU and TPU systems.

2For input sequence lengths >512 on the A100 and input sequence lengths >128 and
>256 on the TPUs, the inference efficiencies are lower than 1 and therefore not shown
on this log-scale graph.

• The ProSE design process including computational pattern
analysis of a bio-repurposed BERT-style model, a detailed
design space exploration, and microarchitecture optimiza-
tions to eliminate expensive intermediate storage, reduce
superfluous data movements, approximate special functions,
and increase efficiency via task parallelism across threads
and pipeline parallelism within threads.

• A detailed microarchitecture comparison of ProSE and TPU
to highlight three novelties: 1) significantly better efficiency
with increased input sequence lengths using heterogeneous
systolic arrays, 2) exploitation of a streaming systolic ar-
ray without dedicated local scratchpad via local dataflow
as opposed to TPU’s global dataflow that employs a large,
power-hungry Unified Buffer, and 3) a novel left-rotation-
capable systolic array that tightly integrates with a SIMD
unit to perform element-wise SIMDALU operation or special
function without having to communicate to a local buffer.

2 BACKGROUND AND MOTIVATION
Substantial groundbreaking work has documented the success of
NLP models in protein modeling [1, 3, 8, 35, 43, 45], especially those
employing BERT-style structures [11]. These models uniquely ben-
efit from unsupervised pre-training, something CNNs struggle to
do for sequence data. This ability does not merely enable highly
accurate downstream protein structure prediction [43, 45], but can
permit strong zero-shot performance [35] and the potential to aug-
ment or outpace the impressive AlphaFold2 [8, 22]. Despite the
success of these bio-repurposed NLP models, commodity platforms
overlook the computational needs of these NLP models, especially
runtimes encountered executing BERT-style models on proteins.

To begin, we provide some background on 1) the fundamental
differences between a human language BERT model and a Protein
BERT model, 2) a feasibility study aimed at the software Protein
BERTmodel we developed to validate a well-known antibody target
for breast cancer, the HER2 protein, and 3) the profiling of inference
of a Protein BERTmodel to motivate and guide our design decisions.

2.1 Human Language BERT Model vs. Protein
BERT Model

The human language BERT model developed at Google AI has ex-
panded into various BERT-style models including ALBERT [27] – a
lite BERT for self-supervised learning representations, RoBERTa [30]
– an augmented training procedure for the BERT with input ma-
nipulations for model robustification, and MobileBERT [48] – a
compact task-agnostic BERT for resource-limited devices. As de-
picted in Figure 2(a), regardless of model parameters, these models
take a sentence or sentences as inputs, tokenize the inputs by words
(each token is represented as a rectangular bounding box such as
“cat”), perform inference on the BERT model, and use downstream
models for desired language tasks.

To perform NLP tasks, these BERT-style models use pre-trained
parameters specific to learning human language. These tasks might
be as simple as language translation, e.g. translating "Where is
Berlin?" from English to German (a frequently short-length task).
Another prominent task is multiple-choice question answering, e.g.
answering the question "Where is Berlin?" by selecting between

656

ProSE: The Architecture and Design of a Protein Discovery Engine ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

The cat sat on the mat

M

Methionine

E

Glutamic
Acid

Y

Tyrosine

Q

Glutamine

Protein
BERT

BERT

Fluorescence
Stability
Binding Affinity

Input Downstream/
Fine-tuning TasksTokens

(~30-80 for language)

(~300-2000+ for proteins)

Different
Pre-trained
Parameters

Translation

Question Answering(a)

(b)

Natural Language
Understanding

Structure Prediction

Figure 2: Summary of inputs and downstream tasks for (a)
natural language processing applications of BERT and (b)
protein design applications of Protein BERT models. The
primary difference between the two is the pre-trained pa-
rameters. However, a typical language task has an input be-
tween 30-80 tokens in length while the majority of protein
sequences are 300-2000+ tokens. This gives the two vastly
different execution profiles in practice. The star annotates
the Binding Affinity task we used in Protein BERT.

A) Nigeria, B) United States, or C) Germany. An alternative to this
is free-response question-answering by spelling out the answer,
e.g. G-E-R-M-A-N-Y. Other tasks might include natural language
understanding, such as taking in simple inputs like "Berlin is in
Germany and Austria is not a part of Germany", then determining
whether "Berlin is the capital of Austria". To train such BERT-style
models, users often make use of supervised learning based on large-
scale labeled datasets in a specific language).

The Protein BERT models we use are identical in structure to
human language BERT models. However, rather than taking in a
human language sentence, the model takes in a protein sequence,
represented as an amino acid alphabet, tokenizes sequence into
individual characters per token, performs inference on the Protein
BERT model, then uses downstream models to perform desired pro-
tein design tasks as shown in Figure 2(b). To perform antibody drug
development tasks, Protein BERTmodels can use pre-trained param-
eters specific to learning protein representations (e.g., parameters
from TAPE [43] or ESM [35, 45]). These models are then trained on
downstream fine-tuning tasks such as fluorescence (certain proteins
fluoresce under the right biological conditions), stability (i.e., predict
if a protein will remain in its native folded conformation or unfold
and change conformations), binding affinity (i.e., the strength of
the interaction between two proteins), or structure prediction (i.e.,
predict a protein’s three-dimensional structure from its amino acid
sequence, as in AlphaFold [10, 22]). In our experiment below, we
train a downstream model on a binding affinity prediction task.

Even though there are no structural differences between BERT-
style models for human language and our Protein BERT model
(model parameters aside), due to the difference in input domain
(language vs. protein sequence), the typical token lengths for these
two types of models differ significantly. For a human language
model, a typical input sequence length (in tokens) is 30 to 80 to-
kens. For a Protein BERT model, however, protein inputs require
a minimum input sequence length between 300 to 2000 tokens de-
pending on the task, as multiple functional structural units (protein
domains) can exhibit long-range effects that requires joint mod-
eling [22]. While some tasks in human language (e.g. translating

an entire book from scratch) can achieve higher performance with
additional sentence context (longer length) [50], this is optional
based on user discretion, unlike protein sequences, which are ob-
ligately long in length. In the future, more long-length tasks may
emerge for human language models, and architectures like ProSE
will benefit these tasks as well.

The input sequence length significantly alters the runtime be-
havior of BERT-style models (see Section 2.3), presenting scalability
challenges such as both compute time and memory footprint in-
crease quadratically as a function of input sequence length for some
operations. This issue of length further motivates a specialized
design more efficient for longer sequence lengths, as commodity
platforms such as TPUs or GPUs optimize for non-BERT models or
short input BERT-style models only.

2.2 Software Protein Binding Evaluation
Pre-trained protein language models (e.g. the aforementioned Pro-
tein BERT using TAPE parameters) have had their transfer learning
predictive capacity validated by multiple wet lab experimentation
papers [3, 45]. Here we perform an in silico validation of a general
task for drug development, binding affinity prediction, via training
a downstream model on the antibody Trastuzumab (brand name
Herceptin) and similar antibody BH1. In general, the higher the
binding affinity between antibody and pathogen the more likely
the antibody will bind to the protein and neutralize it, making for a
promising drug candidate. In our experiment, both Herceptin and
BH1 antibodies bind the HER2 protein, a critical target in breast
cancer [4]. We construct a Protein BERT and downstream task in
PyTorch to assess the feasibility and applicability of our software
model for drug development. The inputs to our Protein BERTmodel
are the Fab subsequences of Herceptin and BH1 variants. The Fab
subsequence is the part most responsible for protein binding (∼450
amino acids in length).

Our downstream model performs feature extraction via the Pro-
tein BERT model from TAPE and fits a regularized linear regression
model [3] on 39 variant Herceptin Fab sequences with 35 BH1 Fab
sequences as an independent test set [46]. We measure the test set
accuracy using rank correlation, a statistic that measures the de-
gree of similarity between different rankings of the same variables.
The rank correlation informs which antibody is predicted to be
most likely to bind to the HER2 protein. This software experiment
achieves a rank correlation of 0.5161, which while perhaps not quite
as accurate as the geometric binding affinity model OSPREY [17],
is more than sufficient for experimental validity (i.e., near or above
0.5). OSPREY is a high-accuracy approach that simulates every
atom in detail via costly protein structure information at the cost
of slow software inference (∼4 orders of magnitude). Unlike many
traditional approaches, BERT-style models are able to mimic the
accuracy of OSPREY while exceling at hardware acceleration, and
unlike OSPREY, which only performs binding affinity predictions,
BERT-style models are applicable to arbitrary downstream tasks, as
detailed in Figure 2. Furthermore, the modularity of BERT-style pro-
tein design software gives our workflow the ability to automatically
improve (without manual engineering) as larger and more powerful
Protein BERT-style models are developed [8, 35, 45], which will
likely close this accuracy gap.

657

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Eyes Robson, Ceyu Xu, and Lisa Wu Wills

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

32 64 128 256 512 1024 2048

Pr
ot

ei
n

BE
RT

 M
od

el

Ex
ec

ut
io

n
Ti

m
e

Input Sequence Length (Number of Tokens)

Matrix Multiply
Batched Mat Mul
Softmax
GELU
Matrix Add
Matrix Div
Other

Figure 3: Runtime breakdown of operations for Protein
BERT as a function of input sequence length. While ma-
trix multiply operations take up the bulk of execution time
with shorter sequence lengths, the ratio decreases as input
lengths increase and other operations start to dominate.

2.3 Profiling of the Protein BERT Model
To design an efficient inference accelerator for protein discovery,
we profiled a Protein BERT model implemented in PyTorch per-
forming inferences on input sequence lengths ranging from 32 to
2048. The inputs to this Protein BERT model are synthetic protein
strings. Human language BERT models and Protein BERT models
do not differ in structure, only in weights and the typical input
sequence lengths. The execution breakdown on an A100 GPU with
machine configuration depicted in Table 1 is presented in Figure 3.
We use a batch sizes of 24576, 12288, 6144, 2048, 512, 128, and 64 for
input lengths 32, 64, 128, 256, 512, 1024, and 2048, respectively, as
this yields the best inference time using the GPU’s limited 40GiB
memory. We observe the percentage of matrix multiplications (Ma-
trix Multiply) decreases while that of other operations, especially
element-wise operations (Matrix Add/Div), as well as special func-
tions (e.g., Softmax), increases. However, matrix multiplications
(batched and unbatched) comprise of 35%–52% of the total runtime
for all the input lengths profiled, signaling the importance of an
accelerator designed to perform matrix operations efficiently.

Table 1: Configuration of the A100 GPU Platform used for
BERT Profiling.

A100 GPU Platform Machine Configuration

Host Processor Intel Xeon
96C, 3GHz

Memory 1152GiB DDR4
GPU A100-SXM4

6912 CUDA Cores, 432 Tensor Cores
GPU Memory 40GiB HBM2
External Interface NVLink 3.0

From the inspection of the Protein BERT software model, we
observe: 1) matrix multiplications (MatMuls) and batched matrix
multiplications (BMMs) use a handful of input matrix sizes with
the majority of the time spent executing much smaller matrices
than what a TPU provisions (i.e., 128×128 systolic arrays for both
TPUv2 and v3) but much bigger than what an A100 tensor core (i.e.,
4×4×8 tensor computations) provisions and 2) element-wise SIMD
operations including special functions are usually dependent on the
result of a MatMul or a BMM. These observations drive our design

0 200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Ru
nt

im
e

Input Sequence Length (Number of Tokens)

Impact of Input Sequence Length on
BERT Model Inference Performance

4 x 64x64 Homogeneous Systolic Arrays
ProSE (Heterogeneous Systolic Arrays)

Lower Better

Figure 4: BERT-style model inference runtime increases
quadratically as input sequence length increases. For short
input sequences, there is little difference in performance
when using large homogeneous systolic arrays vs. hetero-
geneous systolic arrays. However, as input sequence length
passes 300 tokens, representing Protein BERT models, the
heterogeneous architecture eliminates unnecessary over-
head and provides much better performance.

decisions to use smaller and varying sized systolic arrays to execute
smaller input matrix sizes to increase utilization, and to architect
ProSE to use novel left-rotation-capable systolic arrays to perform
MatMuls followed by dependent element-wise SIMD operations or
special functions in a single dataflow without the need to store and
refetch intermediate data.

2.4 Impact of Input Sequence Lengths and
Heterogeneity on BERT Performance

Systolic-array-based designs have shown exceptional efficiency
when executing CNN and DNN models [6, 7, 20, 21]. Noting the
mismatch between hardware provisioned by a homogeneous and
large systolic-array-based architecture such as the TPU and the
smaller input matrix sizes utilized by the Protein BERT model, we
conduct an experiment investigating relationships between input
sequence lengths and the heterogeneity of systolic arrays shown
in Figure 4. We vary the hardware systolic array sizes to better
match software by constructing a heterogeneous systolic-array-
based architecture we call ProSE and compare the inference run-
time with a homogeneous systolic-array-based architecture that is
comprised of four 64×64 systolic arrays, resource-equivalent to the
number of processing elements (PEs) on one TPU 128×128 systolic
array. The hardware resource provisioned for both the homoge-
neous and heterogeneous (ProSE) systolic engines are roughly the
same to ensure fairness (16K PEs). The runtime for both systolic-
array-based architectures increase steadily as the input sequence
length increases. However, the homogeneous architecture has a
much steeper slope as input lengths increase to beyond 128 tokens
due to the unnecessary overheads of executing small matrices as
inputs on several large homogeneous systolic arrays and the lack of
sufficient SIMD units to support element-wise and special function
operations. This experiment shows that a heterogeneous systolic-
array-based architecture that matches the software behavior can
eliminate unnecessary overheads, significantly increase execution
efficiency, and provide much better scalability.

658

ProSE: The Architecture and Design of a Protein Discovery Engine ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

n

(a)
(b)

mode: matmul cycle t: top→bottom; left→right; perform MAC

(c)

mode: simd cycle t: right→left; perform ALU op

Ve
ct

or
 R

eg
is

te
r f

or
 th

e
St

re
am

in
g

In
pu

t

Figure 5: This figure shows the traditional systolic array design with dimensions 𝑛 × 𝑛 in (a), the systolic array performing
a matrix multiplication in matmul mode depicted in (b), and the systolic array performing a SIMD ALU operation in simd
mode illustrated in (c). In order to perform SIMD ALU operations using the systolic array, a column of 𝑛 ALUs need to be
implemented. To eliminate unnecessary stall, pipelining interleaved matrix multiplication and matrix SIMD ALU operations
informed our design to have the systolic array act as a large column left-rotator, producing 𝑛 SIMD operation results per cycle.

MatMul Mat-
Div Exp Sum/

Divide MatMulDataflow 3
(batched)

MatMul Mul-
AddDataflow 1

MatMul Mul-
AddDataflow 2 MatMul Mul-

Add GELU

⎨Softmax

Systolic Array: matmul mode

Execution Resource Utilized

Systolic Array: simd mode
Host CPU PCIe/NVLink

Figure 6: Across model layers, we found three major opera-
tion sequences are executed for around 90% of the total infer-
ence time. If each operation sequence can be executed in a
dataflow-esque fashion on the accelerator without commu-
nicating with the host, it would maximize the efficiency of
the design. Note that Dataflow 3 still has a softmax opera-
tion that requires host-accelerator communications, trading
performance for hardware simplicity.

3 PROSE SYSTEM
3.1 Software-Hardware Co-Design

ProSE Computational Patterns. To exploit common computa-
tional patterns in ProSE, we analyze Protein BERT model execution
and group around 90% of the operations into three major opera-
tion sequences, Dataflows 1, 2, and 3, as shown in Figure 6. Each
pattern can be performed wholly on the accelerator via pipelined
dataflow-esque chaining to eliminate unnecessary data movement
and host-accelerator communication.

ProSE Systolic Arrays. Figure 5(a) depicts a systolic array con-
taining 𝑛 ×𝑛 processing elements (PEs). To support the three major
dataflows, all of which contain matrix multiplication followed by
SIMD ALU operations, we design our systolic arrays to operate

in two modes: matmul and simd. In matmul mode, systolic ar-
rays perform MatMuls by moving data across PEs top-to-bottom,
left-to-right, and execute multiply-accumulate per PE as depicted
in Figure 5(b). In simd mode, systolic arrays act as large left column
rotators that perform element-wise SIMD-style ALU operations by
moving data across PEs right-to-left, executing SIMD ALU opera-
tions using inputs from the left-most column of the systolic array
and the vector register that stores the streaming input as depicted
in Figure 5(c). To enable stall-free dataflow pipelining between op-
erations, the simd mode moves data right to left so the SIMD ALUs
can start executing as soon as the left-most column of the systolic
array has completed its matrix multiplication without having to
wait for the rest of the columns to complete operations. The two
modes work in concert to allow stall-free interleaved MatMul and
SIMD ALU operations by keeping the intermediate data in the PE
accumulators (PE microarchitecture described in Section 3.2).

Systolic Array Types. Prior work has demonstrated rectangular
(non-square) systolic arrays can improve performance on irregular
matrices during GEMM operations [42]. However, this gain is from
improved tiling, which is not a primary limitation at longer input
lengths as our typical square-shape systolic array demonstrates
high utilization in our evaluations.

To support the dataflows depicted in Figure 6, each with a dif-
ferent special function, three obvious design choices suffice: 1) a
homogenous collection of systolic arrays each equipped with the
capability to execute GELU and Exp, 2) a homogenous collection
of systolic arrays with a subset equipped with the capability to
execute GELU and a subset equipped to execute Exp, or 3) a het-
erogenous collection of systolic arrays with a subset equipped with
the capability to execute GELU and a subset equipped to execute
Exp. Since the three major operation sequences are mutually ex-
clusive and execute different portions of the model, we choose
to divide up the systolic arrays into three types, each capable of
executing one operation sequence, to maximize system efficiency.
There are three types of systolic arrays incorporated in ProSE: the

659

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Eyes Robson, Ceyu Xu, and Lisa Wu Wills

Input
Embedding

Multi-Head
Attention

Add & Norm

Intermediate
Layer

Output
Layer

Add & Norm

FC Layer
(Downstream)

Inputs

Outputs

4 x Dataflow 1
1 x Dataflow 3

1 x Dataflow 2

1 x Dataflow 1

x 12

Feed Forward

Figure 7: This figure depicts one layer of the Protein BERT
model: attention, intermediate, and output sublayers, as
well as their dataflowmappings. A full Protein BERTmodel
has 12 consecutive layers (“x 12”) before outputting the re-
sults (e.g. to a downstream FC layer for a downstream task).

M-Type supports MatMuls and SIMD ALU operations, the G-Type
supports MatMuls, SIMD ALU operations, and GELU special func-
tions, and the E-Type supports MatMuls, SIMD ALU operations,
and Exponential functions (Exps).

Systolic Array Mapping and Sizes. We characterize the Pro-
tein BERT model sublayer by sublayer and analyze the matrix mul-
tiplication sizes produced by PyTorch. The model is separable into
the Attention, the Intermediate, and the Output sublayers as shown
in Figure 7 along with the dataflow mappings. For example, the
Attention calculations as well as the Output sublayer use the largest
matrices for computations, usually matrix dimensions𝑚 = 65536,
𝑘 = 768, 3072, and 𝑛 = 768. These corresponds to executing the
operation sequence of Dataflow 1 and the M-Type systolic arrays.
In order to maximize performance for such large MatMul compu-
tations, we chose to implement the M-Type systolic array as the
largest systolic array in ProSE at the dimension of 64×64.

When computing MatMul of varying sizes, smaller systolic ar-
rays suffer less startup and draining costs versus larger systolic
arras if input matrices are small, but they take much longer to com-
plete MatMuls. To compute SIMD ALU operations such as matrix
additions or divisions (by multiplying reciprocal constants) using
our design shown in Figure 5(c), the smaller the systolic array, the
larger the ratio of available SIMD ALU computation units to PEs.
For example, for a 𝑛 × 𝑛 systolic array, there are 𝑛 SIMD ALU units
and there are 𝑛2 PEs, making it a 1:𝑛 ratio. Therefore, smaller sys-
tolic array will have many more SIMD units per PE, allowing any
SIMD intensive operation sequences to perform better.

The batched matrix multiplications in Figure 3 consist of dot
products in the attention sublayer and use the smallest matrices,
usually dimensions 𝑚 = 1024, 𝑘 = 64, and 𝑛 = 512. This is cov-
ered by Dataflow 3 and E-Type systolic arrays, which interleave
matrix division and Exp with MatMul, producing the most SIMD-
intensive operation sequences. To maximize utilization, we chose
to implement E-Type systolic array as smaller systolic arrays, ei-
ther 32×32 or 16×16. Dataflow 2 and G-Type systolic array that
support interleaving GELU and MatMul are also implemented with
medium or small systolic arrays for similar reasons. We verify our
intuition for choosing a heterogeneous collection of systolic arrays
by performing a design space exploration in Section 4.2.

Host-Accelerator Data Transfer
Accelerator Compute

Host Compute
Data Dependencies

(a) Single thread orchestration and scheduling of dataflows executing on ProSE

(b) Two-thread orchestration and scheduling of dataflows executing on ProSE

(c) Four-thread orchestration and scheduling of dataflows executing on ProSE

(d) 32-thread orchestration and scheduling of dataflows executing on ProSE

Figure 8: ProSE uses an orchestration and scheduling mech-
anism that maps software threads to systolic arrays. Multi-
threading enables parallel execution of systolic arrays, sig-
nificantly improve system throughput and efficiency.

Multithreaded Execution of Heterogeneous Systolic Arrays.
Figure 8 shows a typical sequence of data-dependent dataflows
(Dataflow 1 → 3 → 1 → 2 → 1) from the Protein BERT model and
how the software is mapped onto the three types of systolic ar-
rays. Exploiting task parallelism (i.e., a data-dependent dataflow is
a task), we enable the parallel execution of multiple systolic arrays,
significantly increasing system throughput. We show the orchestra-
tion and scheduling of a single-thread, a 2-thread, a 4-thread, and a
32-thread ProSE . Note that every time a type of systolic array is
mapped to an active software thread, a host-accelerator data trans-
fer happens. We implement three I/O buffers, one for each type
of systolic array, and handle thread contentions with mutex locks.
With more threads, fewer data-dependency bubbles occur, but the
overhead of thread contention goes up. Through experimentation,
we chose 32 threads for ProSE.

3.2 ProSE Architecture and Microarchitecture
In this section we describe the ProSE architecture and the microar-
chitecture in detail. Since ProSE is a systolic-array-based archi-
tecture, we carefully compare the differences between a TPUv2
microarchitecture and ProSE to highlight the novelty of our pro-
posal. Note that because TPU’s exact microarchitectural steps are
not publicized, we extrapolate the steps based on the block dia-
grams and publications that describe the functionalities of these
microarchitectural units.

660

ProSE: The Architecture and Design of a Protein Discovery Engine ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

64x64

M Type

Accelerator Card

NVLink
2.0Host

CPU

32x32
+ GELU

32x32
+ GELU

G Type

32x32
+ GELU

16x16
+ Exp

16x16
+ Exp

16x16
+ Exp

16x16
+ Exp

E Type

64x64
16x16
+ Exp

16x16
+ Exp

16x16
+ Exp

16x16
+ Exp

16x16
+ Exp

16x16
+ Exp

16x16
+ Exp

16x16
+ Exp

16x16
+ Exp

16x16
+ Exp

16x16
+ Exp

16x16
+ Exp

16x16
+ Exp

16x16
+ Exp

16x16
+ Exp

16x16
+ Exp

Figure 9: ProSE is a collection of heterogeneous systolic ar-
ray with varying sizes and functionalities. This configura-
tion of ProSE consists of 2 64×64 M-Type, 3 32×32 G-Type,
and 20 16×16 E-Type systolic arrays.

SystemOverview. ProSE is a heterogeneous collection of output-
stationary, streaming systolic arrays packaged on one accelerator
card communicating with a host CPU via a high-bandwidth external
interface such as NVLink 2.0 [12, 39]. Figure 9 shows an example
configuration of ProSE. For our ProSE system, we envision a host
CPU that is capable of supporting four NVLinks similar to what
the latest NVIDIA Grace CPU [38] is capable of, with each NVLink
connecting to one ProSE instance, totaling four ProSE instances
per system.

ProSE Operations. The systolic arrays designed for ProSE sup-
port the datatype bfloat16 [5] and a combination of the following
five primitive operations derived from careful characterizations of
the Protein BERT model:

MatMul performs matrix multiplication 𝐶 = 𝐴 × 𝐵 where 𝐴 and
𝐵 are the input matrices and 𝐶 is the output matrix.

MulAdd performs 𝐶 = 𝛼𝐴 + 𝛽𝐵 where 𝛼 and 𝛽 are scalar con-
stants.

MatDiv performs an element-wise reciprocal multiplication 𝐶 =

𝐴 × 1
𝛼 where 𝛼 is a scalar constant.

Exp performs an element-wise exponential function 𝑒𝑥𝑝 (𝑥) us-
ing a lookup table where 𝑥 is one element of the input matrix𝐴 and
𝐶 = 𝑒𝑥𝑝 (𝐴). This operation is used to support the softmax activa-
tion function in conjunction with the host CPU. The summation and
the division of the softmax activation 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐴) =

𝑒𝑥𝑝 (𝐴𝑖 𝑗)∑
𝑒𝑥𝑝 (𝐴𝑖 𝑗)

are performed on the CPU after the exponential functions are com-
pleted on the systolic array.

GELU performs an element-wise Gaussian Error Linear activa-
tion function 𝐺𝐸𝐿𝑈 (𝑥) = 0.5𝑥 (1 + 𝑡𝑎𝑛ℎ(

√
2/𝜋 (𝑥 +

0.044715𝑥3))) where 𝑥 is one element of the input matrix 𝐴 and
𝐶 = 𝐺𝐸𝐿𝑈 (𝐴).

ProSEProcessing Element. Instead of having large local scratch-
pads or accelerator-attachedmemory as other deep learning acceler-
ators have employed such as the TPU and the A100 GPU, ProSE im-
plements output-stationary systolic arrays (unlike the TPU, which
is weight-stationary) and uses the local multiply-accumulate (MAC)
accumulators as intermediate storage. ProSE streams inputs con-
tinuously from the host, preventing unscalable memory usage on
large models. However, the streaming nature of our design would
be bottlenecked if external interface bandwidths are insufficient,

8-Deep Streaming Buffer

8-Deep
Stream

-ing
Buffer

Delay Slot

Delay Slot

16x16 Systolic Array

(a) ProSE systolic array w/ 8-deep
streaming buffers

X

+
REG_A

ACCUMULATOR

REG_B

IN_A

IN_B
OUT_B

OUT_A
OUTPUT
[31:16]

(b) ProSE systolic array processing
element (PE)

32

32

32

16

16

16

16
16

Intermediate
Storage

ROT_INROT_OUT 32

32

Figure 10: (a) Each ProSE systolic array is equipped with two
8-deep streaming buffers and delay slots to allow streaming
inputs. (b) Each PE is implemented with a 16-bit multiplier,
adder, and a 32-bit accumulator.

making it necessary to deploy ProSE with fast and high-bandwidth
host-accelerator interfaces.

Figure 10(a) shows a diagram of a 16×16 systolic array that
accommodates uninterrupted streaming from the host using an
8-deep streaming buffer for both input matrices. We validate that
8-deep streaming buffers are sufficient to cover the latency given
the NVLink bandwidth provisioned for all types and all sizes of the
ProSE systolic arrays (i.e., M-, G-, and E-Types as well as 64×64,
32×32, and 16×16 sizes) using Little’s Law and our performance
model. These stream buffers are synthesized as registers. A close-up
microarchitecture block diagram for our systolic array processing
element (PE) is shown in Figure 10(b). MACs are executed using
bfloat16 datatype and accumulated using a 32-bit accumulator sim-
ilar to TPUs to prevent precision loss. The 32-bit accumulators in
each PE are used as intermediate storage.

MatMul Executed on TPUv2 vs. ProSE. Figure 11 shows how
a matrix multiply is performed using a systolic array in a TPUv2
and in ProSE. To illustrate, we show a MatMul on two 4×4 input
matrices using a 2×2 systolic array. The operations needed to run
on a TPUv2 depicted in Figure 11(a) while the operations needed
to run on ProSE depicted in Figure 11(b) and show the first two
steps to perform MatMul in Figure 11(c). The 𝐴4×4 × 𝐵4×4 MatMul
is decomposed into four 𝐴2×4 × 𝐵4×2 MatMuls to execute on a 2×2
systolic array.

For a TPUv2 to compute step 1, it performs eight operations
illustrated in Figure 11(a): 1 Load weight matrix B into Weight
FIFO from DDR, 2 Pre-load weights into systolic array as (weight-
stationary unlike ProSE), 3 Stream (the entire) matrix A from the
host into the Unified Buffer (a large local scratchpad), 4 Setup
input matrix A, 5 Shift input matrix A into systolic array, 6
Perform MatMul, 7 Perform accumulation, and 8 Write partial
results to the Unified Buffer. Because the Unified Buffer has already
streamed in matrix A in its entirety, the second step would repeat
operations 4 through 8 , what we term global dataflow.

For ProSE to compute step 1, it performs four operations illus-
trated in Figure 11(b): 1 Stream matrix B-left-half from the host
and shift into systolic array, 2 Stream matrix A-top-half from the
host and shift into systolic array, 3 Perform MatMul, and 4 Write
partial results back to the host. For the second step, ProSE will

661

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Eyes Robson, Ceyu Xu, and Lisa Wu Wills

INPUT MAT A INPUT MAT B OUTPUT MAT C

STEP 1:

INPUT MAT A INPUT MAT B OUTPUT MAT C

STEP 2:

(c)
First 2 steps of performing a A x B MatMul
using a 2x2 Systolic Array where A and B are
4x4 matrices

WEIGHT WEIGHT

WEIGHT WEIGHT

WEIGHT MAT B
FIFO

INPUT
MAT A
SETUP

UNIFIED
BUFFER

ACCUMULATION

Host

Stream from DDR

Stream from Host

(a)

1

2

3
4 5 6

7

8

Simplified TPU

ACCUM ACCUM

ACCUM ACCUM

Host
Stream from Host

Stream from Host INPUT MAT B

INPUT MAT A

(b)

2
3

Simplified ProSE

4

1

Simplified ProSE w/ partial input buffer

ACCUM ACCUM

ACCUM ACCUM

Host

Stream from Host INPUT MAT B

4

5

PARTIAL
INPUT MAT A

Stream from Host

3

Data Reuse

2

1

(d)

Figure 11: A MatMul performed on (a) a TPUv2 microarchitecture and (b) a ProSE microarchitecture. The main difference is
that TPUv2 uses a weight-stationary systolic array while ProSE uses an output-stationary systolic array. Another distinction
is that TPUv2 employs a large local scratchpad to store intermediate results (the Unified Buffer) whereas ProSE uses the 32-bit
accumulators as intermediate storage. (c) A larger MatMul decomposed into smaller MatMuls to execute on a smaller systolic
array. (d) An input partial buffer is implemented to allow data reuse and boost performance in a limited bandwidth scenario.

INPUT MAT A INPUT MAT B OUTPUT MAT C

STEP 1:

INPUT MAT A INPUT MAT B OUTPUT MAT C

STEP 2:

(c) First 2 steps of performing an a*A+B
MulAdd using a 2x2 Systolic Array where
A and B are 4x4 matrices

ACCUM ACCUM

ACCUM ACCUM

Host

Stream from Host

(b)

4

2

ProSE w/ SIMD units

1

Stream
from Host

Vector
Register

Scalar
Register

INPUT
MAT B

INPUT
MAT A

INPUT
SCALAR a

5

3
6

WEIGHT WEIGHT

WEIGHT WEIGHT

WEIGHT MAT B
FIFO

INPUT
MAT A
SETUP

UNIFIED
BUFFER

ACCUMULATION

Host

Stream from DDR

Stream from Host

(a)

1

2

3 4

57

TPU
 ACTIVATION NORMALIZATION6

ACCUM ACCUM

ACCUM ACCUM

Host

Stream from Host

(d)

2

ProSE w/ SIMD and GELU units

1

Stream
from Host

Vector
Register

Scalar
Register

INPUT
MAT B

INPUT
MAT A

INPUT
SCALAR a

3
4

GELU

GELU

Figure 12: A MulAdd performed on (a) a TPUv2 microarchitecture and (b) a ProSE microarchitecture. The main difference
is that TPUv2 uses Normalization to perform scaling and Accumulation to perform addition while ProSE uses SIMD ALUs
and left-rotating columns to exploit local dataflow and pipeline parallelism. (c) A larger MulAdd decomposed into smaller
MulAdds to execute on a smaller systolic array. (d) A GELU lookup table is implemented per SIMD ALU unit to provide fast
approximations of the activation function.

repeat operations 1 through 4 . To exploit data reuse and allevi-
ate the host to accelerator streaming bandwidth requirements, we
implement a configuration of ProSE that provides an input partial
buffer as shown in Figure 11(d). The input partial buffer has enough
room to hold one step of the input matrix A (in this example, a
2×4 matrix) for step 2 to reuse matrix A-top-half without having
to stream from the host. What we termed local dataflow is then
performed via operations 1 3 4 5 in Figure 11(d) and repeated
until the input data stored in the partial buffer have to be replaced.
Note the input partial buffer only stores partial inputs streamed
from the host and not intermediate data since that data is stored in
the accumulators.

MulAdd Executed on TPUv2 vs. ProSE. Figure 12 shows how
aMulAdd a*𝐴4×4 + 𝐵4×4 is performed on a systolic array in a TPUv2
(Figure 12(a)) and ProSE (Figure 12(b)), where a is a scalar constant.
ProSE employs a vector register of the same width as one column
of the systolic array (in this toy example, two elements wide) and a
SIMD unit that contains the same number of ALUs. It also employs
a scalar register and can broadcast the scalar value to the SIMD

ALUs. In order to perform element-wise SIMD operations without
local scratchpads, the systolic array uses the accumulator register
per MAC as intermediate storage and the systolic array is equipped
with a left-rotation capability, shifting matrix stored in the systolic
array to the left by one column after performing a SIMD operation.
To perform MulAdd, ProSE performs the following operations: 1
Stream matrix A-upper-left-quadrant (top half of column 1 and
column 2) from the host and shift into the 2x2 systolic array, 2
Broadcast scalar a from the scalar register to the SIMD ALU units,
3 Rotate systolic array to the left by one column and shift the
left-most column into the SIMD ALUs and perform a*A for two
elements (i.e., set ALU op to MUL), 4 Stream matrix B-upper-left-
column (top half of column 1) from the host and shift into the vector
register, 5 Perform a*A + B by using the input from the vector
register (i.e., set ALU op to ADD), and 6 Write partial results back
to the host.

For the TPUv2 to execute a MulAdd (see Figure 12(a)), it uses
Normalization scale a*A, Accumulation to add a*A+B, and the Uni-
fied Buffer to store the intermediate results. Briefly, the operations
might look like 1 Stream matrix A from the host into the Unified

662

ProSE: The Architecture and Design of a Protein Discovery Engine ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Figure 13: GELU is only com-
puted in the shaded areas.
Inputs outside of these ar-
eas (either too large or too
small) produce results that
are unnecessary to store in
the lookup table.

Figure 14: Exp computation
is also done in certain ranges
to optimize hardware effi-
ciency. We have validated
that these truncation poli-
cies do not affect the accu-
racy of the models we study.

Buffer, 2 Load all 1’s as weights into the systolic array, 3 Setup
input matrix A, 4 Shift input matrix A into systolic array, pass
through Accumulation and Activation, 6 Set the constant in Nor-
malization to be the scalar a and perform a*A, and 7 Write a*A
back to the Unified Buffer. Repeat operations 1 through 4 but
this time stream in matrix B so that 5 B is ready in the Accumula-
tion stage. Repeat again steps 2 3 by streaming in a*A from the
Unified Buffer and perform an ADD in the 5 Accumulation stage,
pass through Activation and Normalization, and finally 7 write
the results of a*A + B into the Unified Buffer.

The comparison shows that while ProSE performed the MulAdd
using one trip of the local dataflow, the TPUv2 is likely having
to traverse two or three trips of the global dataflow, significantly
reducing the efficiency of execution.

ProSE Special Functions. ProSE supports two special functions
GELU and Exp. These special functions are executed in simd mode
as shown in Figure 12(d). While TPUv2 does not have a GELU
activation unit and will be forced to use either a less-accurate ver-
sion of a RELU activation or an approximation expansion of GELU
(e.g. Taylor series expansion) that involves 10+ MulAdd operations,
ProSE has these special function lookup tables implemented as part
of the SIMD ALUs, greatly increase the performance and efficiency
to perform these special functions. Both GELU and Exp are imple-
mented using a two-level indexed lookup table. ProSE supports
bfloat16 datatype with 1 sign bit, 8 exponent bits, and 7 mantissa
bits similar to the TPU. The two-level lookup is done in one cycle,
setting the critical path of the special function units. Because the
protein language model accuracy is sensitive to the precision pro-
duced of GELU and softmax, special care is needed to preserve all
16 bits with lookup tables to match GPU precision.

For GELU, we designed the lookup table such that it only com-
putes the output when the exponent is between -4 and 3 (i.e., [-4,
3]). As shown in Figure 13, when the input is with an exponent
smaller than -3, it can be approximated as 0. When the input is
with an exponent larger than 4, it can be approximated by a linear
function. Only lightly shaded areas are computed for GELU using
the lookup tables. For Exp, we followed the similar design choice
and only computes the output when the exponent is in between -6
nd 5 (i.e., [-6, 5]) as shown in Figure 14.

Protein BERT
PyTorch Frontend:

Python
C++
Java

PyTorch
JIT

Compiler

ATen
Lib Calls

(e.g.,
MatMul,
MatAdd)

Dataflow
Construction

Functional Simulation
via

Verilog Simulation

ProSE
written in

Chisel

ProSE
generated in

Verilog

Timing Simulation
via a

Cycle-Accurate
Simulator written in

Python

Our contribution

Open-source toolchain, compiler, etc.

Figure 15: Our simulation infrastructure is tightly inte-
grated with the Protein BERT software model, providing
flexible yet high fidelity evaluation. The star denotes that
Python is our choice language for the PyTorch frontend.

This design choice allows sufficient precision while keeping the
lookup table at a reasonable size of 4 KB and 6KB respectively. Each
systolic array duplicates the lookup table 𝑛 times where 𝑛 is the
number of SIMD ALU units. Each lookup table allows one lookup
per cycle, trading area for performance.

ProSE Efficiencies. Dataflow 1 and Dataflow 2 computational
patterns (from Figure 6) can execute efficiently on existing systolic-
array-based architectures as long as the model and intermediate
data can utilize the local storage on the accelerator efficiently. How-
ever, as lengths increase, workloads that exhibit a computational
pattern similar to Dataflow 3 suffer from the increasing portions
of the matrix divisions, softmax operations, and interleaving Mat-
Mul and SIMD operations (see Figure 3), which are not handled
well by existing architectures. In order to achieve high throughput
at longer input lengths, ProSE aptly 1) batches CPU-essential op-
erations like softmax efficiently via streaming, 2) accelerates the
cost-intensive Exp with dedicated lookup tables, and 3) maximizes
E-type utilization via interleaving operations on small systolic ar-
rays. In addition to these long-length-specific design decisions, we
gain significant length-agnostic efficiency from other choices such
as our output-stationary design and left-rotating systolic arrays.

4 PROSE DESIGN AND EVALUATION
4.1 Methodology

Implementation Methodology. Systolic arrays, GELU units,
and Exp units are implemented in Chisel [44], compiled into Ver-
ilog using the Chisel toolchain. The Verilog is then synthesized
using Synopsys [49], placed and routed using the FreePDK 15 nm
technology node [33, 36] and scaled to 7 nm using the sub-10 nm
technology scaling methodology [47] to obtain timing (frequency),
power, and area of each ProSE hardware component. A summary of
the component physical characteristics is provided in Table 2. The
slowest MatMul-capable systolic arrays run at 1626MHz and the
slowest SIMD/GELU/Exp-capable systolic arrays run at 858MHz
setting the critical path. We choose to double-pump the systolic ar-
rays when performing MatMul operations at 1.6GHz and halve the
frequency for SIMD or special functions to 800MHz, simplifying
design complexities. For the input buffer (InBuf), we assume they
are implemented in SRAM and estimate their physical characteris-
tics using the latest OpenRAM technology [16] at 45 nm PDK and
scale the results to 7 nm.

663

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Eyes Robson, Ceyu Xu, and Lisa Wu Wills

Table 2: This table presents the physical design characteristics of ProSE systolic arrays and special functions. The components
are designed using the Predictive TechnologyModeling (PTM) FreePDK 15 nm. For the input buffer (+InBuf), we use OpenRAM
to synthesize, place, and route SRAMs at the latest technology available, 45 nm PDK. The obtained results are conservatively
scaled to the same technology as the A100 at 7 nm and compared to the A100 power and area.

Heterogeneous Systolic Array Physical Characteristics

Systolic Array Dimension GELU LUT Exp LUT Frequency (MHz) Power (mW) +InBuf Power (mW) %A100 Power Area (mm2) +InBuf Area (mm2) %A100 Area

16×16 no no 1977.1 249.3 268.6 0.07% 0.183 0.213 0.03%
no yes 925.2 260.2 279.5 0.07% 0.190 0.221 0.03%
yes no 887.1 255.1 274.4 0.07% 0.187 0.217 0.03%

32×32 no no 1707.1 802.6 841.2 0.21% 0.706 0.766 0.09%
no yes 886.8 830.0 868.5 0.22% 0.725 0.786 0.10%
yes no 870.3 808.4 847.0 0.21% 0.719 0.779 0.09%

64×64 no no 1626.1 2552.1 2629.1 0.66% 2.788 2.908 0.35%
no yes 858.1 2578.2 2655.2 0.66% 2.829 2.949 0.36%
yes no 860.4 2514.8 2591.8 0.65% 2.816 2.936 0.36%
yes yes 858.1 2585.8 2662.9 0.67% 2.863 2.983 0.36%

Evaluation Methodology. Figure 15 shows our simulation in-
frastructure. We developed a functional simulator and a cycle-
accurate performance simulator including host-accelerator com-
munications using conservative assumptions for achievable band-
widths. The Protein BERT model is implemented in PyTorch [41].
We instrumented our PyTorch model to produce raw sequences of
its backend tensor and mathematical operation library calls (ATen
calls) via the PyTorch JIT compiler. The produced ATen library calls
are then constructed into dataflows and fed into the Verilog simula-
tor for functional verification. The dataflows are fed into the cycle-
accurate performance simulator to produce cycle counts. Combined
with the physical characteristics in Table 2, we obtained the runtime
of the ProSE system performing Protein BERT dataflows. In addi-
tion to operations executed on ProSE, we used a commodity Xeon
CPU as the host CPU3 to perform part of the softmax computations
(i.e., Dataflow 3 in Figure 6) and incorporate the CPU-side runtime
into our results.

Besides a detailed model of the ProSE microarchitecture, the
cycle-accurate performance simulator includes a thread launching
model, an orchestration/scheduling model, and a host-accelerator
communication model. All of these overheads are included in our
results. We measure A100 and TPU results and compare the accel-
erated portions (all operations except for “Other” in Figure 3).

For the A100 power consumption, we measure ProteinBERT
via NVIDIA System Management Interface (nvidia-smi) to obtain
power consumption at 395W (close to the published TDP of 400W).
For the TPU power consumption, we use published TDP (e.g., v2
280W per chip and 4 chips/device = 1120W) as there are no power
measurement tools publicly available. For ProSE power consump-
tion, we synthesize ProSE’s systolic arrays, with andwithout lookup
tables, input buffers, and SIMD units to obtain results shown in Ta-
ble 2 and Table 4. Additionally, we use Intel RAPL to measure CPU
power under ProSE load (21.4% of the time consuming 50.21W)
and DRAM power (6.23W) to obtain ProSE power executing the
same ProteinBERT model. We conservatively do not include CPU
power or NVLink/PCIe power for GPU/TPU platforms.

3Intel Xeon Gold 6140M (14 nm Skylake), dual socket with 36C/72T @ 2.3GHz (Turbo
3.7GHz), 24.75MB L3 cache; 128GiB DDR4 memory and 256GiB SSD storage.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

40 45 50 55 60

R
un

tim
e

N
or

m
al

iz
ed

 to
O

ne
 A

10
0

G
PU

Power(W)

BestPerf

Most
PowerEfficient

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

44 46 48 50 52 54

R
un

tim
e

N
or

m
al

iz
ed

 to
O

ne
 A

10
0

G
PU

Area(mm^2)

Most
AreaEfficient

BestPerf

Figure 16: We perform a detailed design space exploration
(DSE) using 238 configurations and plot the normalized
runtime vs. power on the left and normalized runtime vs.
area on the right. We select the BestPerf and Pareto front
MostPowerEfficient and MostAreaEfficient configurations.

Table 3: Heterogeneous systolic array types, sizes, and
counts in our DSE.

Hardware Configurations for Design Space Exploration

Systolic Array Type Systolic Array Size Maximum Count Counts Explored

M-Type 64×64 2 1 ... 3
G-Type 32×32 15 1 ... 15

16×16 31 1 ... 31
E-Type 32×32 15 1 ... 15

16×16 31 1 ... 31
Homogeneous 64×64 4 4

4.2 ProSE Systolic Array Mix Design Space
Exploration

We perform a design space exploration (DSE) on ProSE hardware
configurations. We explore mixes of types, sizes, and counts as
shown in Table 3. We eliminate configurations that yield unrea-
sonable performance or efficiency to reduce the number of ProSE
configurations under consideration (e.g., M-Type systolic arrays
have to be at least 64×64 for the performance to be competitive). We
keep the total number of PE counts constant at 16384 PEs, resource-
equivalent to a single TPU 128×128 systolic array. Since all systolic
array types are needed for functionality, every configuration must
have a count of one or more. Other factors considered include the

664

ProSE: The Architecture and Design of a Protein Discovery Engine ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Table 4: Six select ProSE designs with 16K and 20K PEs for
further evaluation.

Select ProSE Instance Configurations for Further Evaluation

M M G G E E Power Area
Config size count size count size count (mW) (mm2)

BestPerf 64×64 2 16×16 10 16×16 22 12994 12.75
MostEfficient 64×64 2 32×32 3 16×16 20 12306 12.49
Homogeneous 64×64 2 64×64 1 64×64 1 10652 11.93

BestPerf+ 64×64 2 32×32 5 32×32 7 16918 48.50
MostEfficient+ 64×64 2 32×32 5 32×32 7 16918 48.50
Homogeneous+ 64×64 2 64×64 1 64×64 2 13315 14.92

use of an input buffer and how NVLink bandwidths are statically
divided by lanes and connected to each systolic array type.

We explore how to provision bandwidth for each type of systolic
arrays as the streaming nature of ProSE can become a bottleneck
if not managed. We use NVLink 2.0 for our DSE and statically
partition 6 45GB/s lanes [12, 32] (6 * 45 = 270GB/s, a conservative
estimate of achievable NVLink 2.0 bandwidth at 90% of 300 GB/s),
connected to the M-, G-, and E-Type systolic arrays. The number
of lanes per systolic array type is swept as part of the design space
exploration and a different option is chosen for each mix of systolic
arrays.

We explored 238 hardware configurations including homoge-
neous configurations and the results are plotted in Figure 16. Per-
formance (runtime normalized to one A100) vs. power and perfor-
mance vs. area of the DSE are depicted on the left and right plots.
Aside from the best performant configuration (BestPerf), choos-
ing Pareto design points would give us the maximum power- and
area-efficiency (MostPowerEfficient and MostAreaEfficient).
The DSE results revealed that the MostPowerEfficient and the
MostAreaEfficient happens to be the same configuration which
we call MostEfficient. Table 4-top lists the select configurations
from our DSE and a homogeneous configuration with a resource
profile of 16K PEs for further evaluation.

4.3 ProSE Evaluation
To assess the impact of hardware resources on ProSE performance
and efficiency, we perform DSEs sweeping number of PEs ranging
from 8K to 24K at a fixed 90% achievable NVLink 2.0 bandwidth of
270GB/s. Figure 17 plots resources vs. performance on the left and
resources vs. power efficiency on the right for the BestPerf and the
MostEfficient configurations from each resource profile. We ob-
serve that with hardware resources provisioned at 16K PEs (ProSE)
or 20K PEs (ProSE+), the designs are the most balanced where each
ProSE instance is comparably power-efficient and performant.

For the resource profile of 20K PEs, we explore the possibility of a
larger ProSE instance being bandwidth-bound and perform another
DSE with a larger communication link bandwidth of 540GB/s, the
90% achievable NVLink 3.0 bandwidth employed by the A100 GPU.
Table 4-bottom lists the select configurations from this DSE and a
homogeneous configuration with a resource profile of 20K PEs for
further evaluation.

We measure GPU system performance using one instance of
the A100 GPU and maximize performance using batch size ap-
propriate for an input length of 512 tokens. For the TPU system

1
2
3
4
5
6
7

BestPerf Most
PowerEfficient

Pe
rf

N
or

m
al

iz
ed

 to
O

ne
 A

10
0

G
PU

Resources (# PEs)

8K PEs 12K PEs 16K PEs
20K PEs 24K PEs

10

20

30

40

50

60

BestPerf Most
PowerEfficient

Pe
rf/

W
 N

or
m

al
iz

ed
 to

O
ne

 A
10

0
G

PU

Resources (# PEs)

ProSE
(1x TPU
systolic array)

ProSE+
(1.25x TPU
systolic array)

Figure 17: Our DSE explores PEs counts ranging from 8K to
20K. We find both 16K and 20K PEs counts are good balance
points for performance and efficiencywhen utilizing emerg-
ing links [12, 39].

measurements, we use one instance of the TPUv3 from Google
Cloud. Similarly, we maximize inference performance using appro-
priate batch size. Due to the competitive nature of deep learning
software, the state-of-the-art Huggingface library for Transformers
used here is heavily optimized to meet industry standards and min-
imizes time spent with low operational intensity (e.g. transposes).
For the ProSE performance and power efficiency evaluation, we
use an input sequence length of 512 tokens and a batch size of 128.

Figure 18 plots the ProSE speedup with respect to one NVIDIA
A100 GPU on the left and one TPUv3 instance (4 chips/8 cores with
hardware resource totaling 262K PEs) on the right with varying
host-accelerator communication bandwidths. The BestPerf and
the MostEfficient designs achieve a speedup of 3.9–4.7× over the
A100 and a speedup of 3.1–3.8× over TPUv3 with NVLink 2.0. The
BestPerf+ and the MostEfficient+ designs demand faster links
as they have more compute resources and do not become compute-
bound until the bandwidth reaches 360 GB/s, as shown in Figure 20.
The homogeneous designs, however, cannot deliver the desired
level of performance even at infinite bandwidth as it suffers from
large overhead of starting and draining large systolic arrays when
performing smaller matrix operations. In addition, homogeneous
design do not have enough SIMD ALUs and special function units
to compete with heterogeneous designs when performing inference
on a BERT-style model with long input lengths.

Power efficiencies of the ProSE designs follow similar trends
shown in Figure 19, gaining one to two orders of efficiency over GPU
and TPU systems. Even with our design choice of streaming systolic
arrays, because the intermediate data mostly fit within the large L3
cache on the host and can be stored and retrieved without frequent
trips to host-side memory, DRAM is mostly accessed during cold
misses to the caches, providing power efficiency over GPU and TPU
platforms.

5 RELATEDWORK
Modified Systolic Arrays. It has been shown many small sys-

tolic arrays may increase the utilization (thus efficiency) at the cost
of performance [23]. Maestro [24, 34] showed as much but only
for short inputs only on BERT-style models. However, even when
scaled to 7 nm, Maestro does not compete with modern accelerators
like A100 or TPUs. Other streaming systolic arrays make use of
emerging high-bandwidth host- accelerator external interfaces (e.g.

665

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Eyes Robson, Ceyu Xu, and Lisa Wu Wills

0
1
2
3
4
5
6
7
8

Be
st

Pe
rf

Be
st

Pe
rf+

M
os

tE
ffi

ci
en

t

M
os

tE
ffi

ci
en

t+

H
om

og
en

eo
us

H
om

og
en

eo
us

+

Be
st

Pe
rf

Be
st

Pe
rf+

M
os

tE
ffi

ci
en

t

M
os

tE
ffi

ci
en

t+

H
om

og
en

eo
us

H
om

og
en

eo
us

+

vs. A100 vs. TPUv3

Pr
oS

E
an

d
Pr

oS
E+

 S
pe

ed
up

Host-Accelerator Communication Bandwidths

NVLink 2.0 @ 80% 240 GB/s NVLink 2.0 @ 90% 270 GB/s
NVLink 3.0 @ 80% 480 GB/s NVLink 3.0 @ 90% 540 GB/s
Infinite

Figure 18: Speedup of ProSE over NVIDIA A100 GPU and
TPUv3 when evaluated with different link bandwidths.
BestPerf and BestPerf+ designs can be seen plateauing
at different maximal speedups as they approach fully
compute-bound performance.

0
20
40
60
80

100
120
140
160
180
200

Be
st

Pe
rf

Be
st

Pe
rf+

M
os

tE
ffi

ci
en

t

M
os

tE
ffi

ci
en

t+

H
om

og
en

eo
us

H
om

og
en

eo
us

+

Be
st

Pe
rf

Be
st

Pe
rf+

M
os

tE
ffi

ci
en

t

M
os

tE
ffi

ci
en

t+

H
om

og
en

eo
us

H
om

og
en

eo
us

+

vs. A100 vs. TPUv3

Pr
oS

E
an

d
Pr

oS
E+

 N
or

m
al

iz
ed

Po

w
er

 E
ffi

ci
en

cy

Host-Accelerator Communication Bandwidths

Figure 19: Power efficiency of ProSE over NVIDIAA100 GPU
and TPUv3 when evaluated with different link bandwidths.
ProSE is a lot more power-efficient than TPUv3 (two orders
of magnitude more efficient) due to the elimination of the
large and power-hungry Unified Buffer.

0 90 180 270 360 450 540 630

Pe
rfo

rm
an

ce

Bandwidth (GB/s)

Roofline

BestPerf
BestPerf+

Figure 20: Empirical roofline for BestPerf and BestPerf+ de-
signs. As the different heterogeneous components of ProSE
become compute-bound, the BestPerf and BestPerf+ designs
creep towards saturation.

NVLink [12, 32]), e.g. DUET [29], which only functioned for sparse
CNN and DNNs, not BERT-style NLP models (Transformers).

More generally, sparse GEMM accelerators require significant
sparsity and similarly accelerate only the matrix multiplication
portions of a Transformer [42]. SIGMA’s specific gains on BERT-
style models are also limited to short input lengths as it does not
target long input lengths and tiling efficiency gains are amortized on
longer inputs. Multi-tenant systolic-array-based accelerators [15]
do not accelerate BERT-style models, and most of their gains are
CNN-specific.

Accelerators for NLP Models. A handful of competitive works
accelerate BERT-style NLP models, but these optimize only for
isolated operations (e.g. softmax) [18, 19, 31, 52]. Our approach is
distinct as it can accelerate the bulk of the model across multiple
layers, something past work cannot handle. Namely, our three
accelerated dataflows capture 80 to 95% of operations, as shown
in Figure 3.

Non-NLP Accelerators. A plethora of specialized accelerators
deliver performance and efficiency gains when performing infer-
ences on CNNs and DNNs [2, 6, 7, 14, 26, 37, 40]. These models
exhibit fundamentally different computational patterns to BERT-
style models (Transformers), which do not benefit from the signifi-
cant resources dedicated to accelerating convolutional filters (not

present in most Transformers). As such, these architectures cannot
efficiently predict protein binding affinity for drug discovery.

6 CONCLUSION
As the realizable benefits of AI increase, it is imperative to increase
the efficiency of transfer learning not just for natural language
processing but also for drug design and discovery. To increase the
performance, power, and area efficiencies of producing more accu-
rate drug candidates, we present ProSE, a systolic engine for protein
discovery. By swapping out the transformer model weights being
accelerated (e.g., adding decoder layers for language translation) or
adding different fine-tuning downstream models, ProSE is easily
applicable to a multitude of other protein and NLP-related tasks.

With ProSE, we present a power- and area-efficient design of a
collection of output-stationary streaming heterogeneous systolic ar-
rays of varying sizes and counts. These systolic arrays are equipped
with capabilities to execute SIMD ALU operations, SIMD GELU
functions, and SIMD Exp functions. ProSE performs Protein BERT
inference at up to 6.9× speedup over one NVIDIA A100 GPU and
up to two orders of magnitude power efficiency gain over the latest
GPU and TPU platforms. Our work demonstrates that identifying
optimization opportunities from common computational patterns
across model layers allows the efficiency gains of specialization
without sacrificing generality.

7 ACKNOWLEDGEMENT
We thank the reviewers for their insightful comments. This work
was supported in part by a Facebook SysML Research Award, in part
by an National Science Foundation CAREER award CCF-2045974,
and in part by the Center for Applications Driving Architectures
(ADA), one of six centers of JUMP, a Semiconductor Research Cor-
poration program co-sponsored by DARPA.

REFERENCES
[1] Ethan C. Alley, Grigory Khimulya, Surojit Biswas, Mohammed AlQuraishi, and

George M. Church. 2019. Unified rational protein engineering with sequence-
based deep representation learning. Nature Methods 16, 12 (01 Dec 2019), 1315–
1322. https://doi.org/10.1038/s41592-019-0598-1

666

https://doi.org/10.1038/s41592-019-0598-1

ProSE: The Architecture and Design of a Protein Discovery Engine ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

[2] Bahar Asgari, Ramyad Hadidi, Hyesoon Kim, and Sudhakar Yalamanchili. 2019.
LODESTAR: Creating Locally-Dense CNNs for Efficient Inference on Systolic
Arrays. In 2019 56th ACM/IEEE Design Automation Conference (DAC). https:
//doi.org/10.1145/3316781.3322472

[3] Surojit Biswas, Grigory Khimulya, Ethan C. Alley, Kevin M. Esvelt, and
George M. Church. 2020. Low-N protein engineering with data-efficient
deep learning. bioRxiv (2020). https://doi.org/10.1101/2020.01.23.917682
arXiv:https://www.biorxiv.org/content/early/2020/08/31/2020.01.23.917682.full.pdf

[4] Jenny Bostrom, Lauric Haber, Patrick Koenig, Robert F. Kelley, and Germaine
Fuh. 2011. High Affinity Antigen Recognition of the Dual Specific Variants of
Herceptin Is Entropy-Driven in Spite of Structural Plasticity. PLoS ONE 6, 4
(April 2011), e17887. https://doi.org/10.1371/journal.pone.0017887

[5] N. Burgess, J. Milanovic, N. Stephens, K. Monachopoulos, and D. Mansell. 2019.
Bfloat16 Processing for Neural Networks. In 2019 IEEE 26th Symposium on Com-
puter Arithmetic (ARITH). 88–91. https://doi.org/10.1109/ARITH.2019.00022

[6] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Architec-
ture for Energy-Efficient Dataflow for Convolutional Neural Networks. In 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA).
367–379. https://doi.org/10.1109/ISCA.2016.40

[7] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2: A
Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 2 (2019),
292–308. https://doi.org/10.1109/JETCAS.2019.2910232

[8] Ratul Chowdhury, Nazim Bouatta, Surojit Biswas, Charlotte Rochereau, GeorgeM.
Church, Peter K. Sorger, and Mohammed AlQuraishi. 2021. Single-sequence
protein structure prediction using language models from deep learning. bioRxiv
(2021). https://doi.org/10.1101/2021.08.02.454840

[9] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan
Salakhutdinov. 2019. Transformer-XL: Attentive Language Models beyond a
Fixed-Length Context. In Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics. Association for Computational Linguistics,
Florence, Italy, 2978–2988. https://doi.org/10.18653/v1/P19-1285

[10] DeepMind. 2022. AlphaFold: Using AI for scientific discovery. https://deepmind.
com/blog/article/AlphaFold-Using-AI-for-scientific-discovery.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186. https://doi.org/10.18653/v1/N19-1423

[12] Denis Foley and John Danskin. 2017. Ultra-Performance Pascal GPU and NVLink
Interconnect. IEEE Micro 37, 2 (2017), 7–17. https://doi.org/10.1109/MM.2017.37

[13] David H. Freedman. 2020. Hunting for New Drugs with AI. Scientific American
Digital Issue (February 2020). https://doi.org/10.1038/d41586-019-03846-0

[14] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. 2017.
TETRIS: Scalable and Efficient Neural Network Acceleration with 3D Memory. In
Proceedings of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems (Xi’an, China) (ASPLOS ’17).
Association for Computing Machinery, New York, NY, USA, 751–764. https:
//doi.org/10.1145/3037697.3037702

[15] Soroush Ghodrati, Byung Hoon Ahn, Joon Kyung Kim, Sean Kinzer, Brahmen-
dra Reddy Yatham, Navateja Alla, Hardik Sharma, Mohammad Alian, Eiman
Ebrahimi, Nam Sung Kim, Cliff Young, and Hadi Esmaeilzadeh. 2020. Planaria:
Dynamic Architecture Fission for Spatial Multi-Tenant Acceleration of Deep Neu-
ral Networks. In 2020 53rd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). 681–697. https://doi.org/10.1109/MICRO50266.2020.00062

[16] Matthew R. Guthaus, James E. Stine, Samira Ataei, Brian Chen, Bin Wu, and
Mehedi Sarwar. 2016. OpenRAM: An open-source memory compiler. In 2016
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 1–6.
https://doi.org/10.1145/2966986.2980098

[17] Mark A. Hallen, Jeffrey W. Martin, Adegoke Ojewole, Jonathan D. Jou, Anna U.
Lowegard, Marcel S. Frankel, Pablo Gainza, Hunter M. Nisonoff, Aditya Mukund,
Siyu Wang, Graham T. Holt, David Zhou, Elizabeth Dowd, and Bruce R. Donald.
2018. OSPREY 3.0: Open-source protein redesign for you, with powerful new
features. Computational Chemistry 39, 30 (October 2018), 2494–2507. https:
//doi.org/10.1002/jcc.25522

[18] Tae Jun Ham, Sung Jun Jung, Seonghak Kim, Young H Oh, Yeonhong Park,
Yoonho Song, Jung-Hun Park, Sanghee Lee, Kyoung Park, Jae W Lee, and Deog-
Kyoon Jeong. 2020. A3: Accelerating Attention Mechanisms in Neural Networks
with Approximation. In Proceedings of the IEEE International Symposium on High-
Performance Computer Architecture (HPCA).

[19] Tae Jun Ham, Yejin Lee, Seong Hoon Seo, Soosung Kim, Hyunji Choi, Sung Jun
Jung, and Jae W. Lee. 2021. ELSA: Hardware-Software Co-design for Efficient,
Lightweight Self-Attention Mechanism in Neural Networks. In 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA). 692–705.
https://doi.org/10.1109/ISCA52012.2021.00060

[20] Norman P. Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nishant Patil, James
Laudon, Cliff Young, and David Patterson. 2020. A Domain-Specific Supercom-
puter for Training Deep Neural Networks. Commun. ACM 63, 7 (jun 2020), 67–78.
https://doi.org/10.1145/3360307

[21] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, aron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law ans Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiana, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis
of a Tensor Processing Unit. In Proceedings of the International Symposium on
Computer Architecture (ISCA).

[22] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna
Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard,
Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain,
Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal
Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian
Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu,
Pushmeet Kohli, and Demis Hassabis. 2021. Highly accurate protein structure
prediction with AlphaFold. Nature (15 Jul 2021). https://doi.org/10.1038/s41586-
021-03819-2

[23] H.T. Kung, Bradley McDanel, and Sai Qian Zhang. 2019. Packing Sparse Convo-
lutional Neural Networks for Efficient Systolic Array Implementations: Column
Combining Under Joint Optimization. In Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems (Providence, RI, USA) (ASPLOS ’19). Association for Computing Ma-
chinery, New York, NY, USA, 821–834. https://doi.org/10.1145/3297858.3304028

[24] H. T. Kung, Bradley McDanel, Sai Qian Zhang, Xin Dong, and Chih Chiang Chen.
2019. Maestro: A Memory-on-Logic Architecture for Coordinated Parallel Use of
Many Systolic Arrays. In 2019 IEEE 30th International Conference on Application-
specific Systems, Architectures and Processors (ASAP), Vol. 2160-052X. 42–50. https:
//doi.org/10.1109/ASAP.2019.00-31

[25] Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman Parashar,
Vivek Sarkar, and Tushar Krishna. 2019. Understanding Reuse, Performance, and
Hardware Cost of DNN Dataflow: A Data-Centric Approach. In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture (Columbus,
OH, USA) (MICRO ’52). Association for Computing Machinery, New York, NY,
USA, 754–768. https://doi.org/10.1145/3352460.3358252

[26] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. 2018. MAERI: Enabling
Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable Intercon-
nects. SIGPLAN Not. 53, 2 (mar 2018), 461–475. https://doi.org/10.1145/3296957.
3173176

[27] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2020. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. In International Conference on Learning
Representations. https://openreview.net/forum?id=H1eA7AEtvS

[28] Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein,
and Joseph E. Gonzalez. 2020. Train large, then compress: rethinnking model
size for efficient training and inference of transformers. arXiv (February 2020).
https://arxiv.org/abs/2002.11794.

[29] Liu Liu, Zheng Qu, Lei Deng, Fengbin Tu, Shuangchen Li, Xing Hu, Zhenyu
Gu, Yufei Ding, and Yuan Xie. 2020. DUET: Boosting Deep Neural Network
Efficiency on Dual-Module Architecture. In 2020 53rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). 738–750. https://doi.org/10.
1109/MICRO50266.2020.00066

[30] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis Luke Zettlemoyer, and Vaseline Stoyanov. 2019. RoBERTa:
A Robustly Optimized BERT Pretraining Approach. ArXiv e-prints (July 2019).
arXiv:1907.11692

[31] Siyuan Lu, Meiqi Wang, Shuang Liang, Jun Lin, and Zhongfeng Wang. 2020.
Hardware Accelerator for Multi-Head Attention and Position-Wise Feed-Forward
in the Transformer. ArXiv e-prints (September 2020). arXiv:2009.08605

[32] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
2020. Pump Up the Volume: Processing Large Data on GPUs with Fast Inter-
connects. In Proceedings of the International Conference on Management of Data
(SIGMOD) (Portland, OR, USA). Association for Computing Machinery, New York,
NY, USA, 1633–1649. https://doi.org/10.1145/3318464.3389705

667

https://doi.org/10.1145/3316781.3322472
https://doi.org/10.1145/3316781.3322472
https://doi.org/10.1101/2020.01.23.917682
https://arxiv.org/abs/https://www.biorxiv.org/content/early/2020/08/31/2020.01.23.917682.full.pdf
https://doi.org/10.1371/journal.pone.0017887
https://doi.org/10.1109/ARITH.2019.00022
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/JETCAS.2019.2910232
https://doi.org/10.1101/2021.08.02.454840
https://doi.org/10.18653/v1/P19-1285
https://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery
https://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/MM.2017.37
https://doi.org/10.1038/d41586-019-03846-0
https://doi.org/10.1145/3037697.3037702
https://doi.org/10.1145/3037697.3037702
https://doi.org/10.1109/MICRO50266.2020.00062
https://doi.org/10.1145/2966986.2980098
https://doi.org/10.1002/jcc.25522
https://doi.org/10.1002/jcc.25522
https://doi.org/10.1109/ISCA52012.2021.00060
https://doi.org/10.1145/3360307
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1145/3297858.3304028
https://doi.org/10.1109/ASAP.2019.00-31
https://doi.org/10.1109/ASAP.2019.00-31
https://doi.org/10.1145/3352460.3358252
https://doi.org/10.1145/3296957.3173176
https://doi.org/10.1145/3296957.3173176
https://openreview.net/forum?id=H1eA7AEtvS
https://arxiv.org/abs/2002.11794
https://doi.org/10.1109/MICRO50266.2020.00066
https://doi.org/10.1109/MICRO50266.2020.00066
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2009.08605
https://doi.org/10.1145/3318464.3389705

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Eyes Robson, Ceyu Xu, and Lisa Wu Wills

[33] Mayler Martins, Jody Maick Matos, Renato P. Ribas, André Reis, Guilherme
Schlinker, Lucio Rech, and Jens Michelsen. 2015. Open Cell Library in 15nm
FreePDK Technology. In Proceedings of the 2015 Symposium on International
Symposium on Physical Design (Monterey, California, USA) (ISPD ’15). Association
for Computing Machinery, New York, NY, USA, 171–178. https://doi.org/10.
1145/2717764.2717783

[34] Bradley McDanel, Sai Qian Zhang, H. T. Kung, and Xin Dong. 2019. Full-Stack
Optimization for Accelerating CNNs Using Powers-of-Two Weights with FPGA
Validation. In Proceedings of the ACM International Conference on Supercomputing
(Phoenix, Arizona) (ICS ’19). Association for Computing Machinery, New York,
NY, USA, 449–460. https://doi.org/10.1145/3330345.3330385

[35] Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu, and Alexander
Rives. 2021. Language models enable zero-shot prediction of the effects of
mutations on protein function. bioRxiv (2021). https://doi.org/10.1101/2021.07.
09.450648

[36] NC State University. 2022. FreePDK15. https://www.eda.ncsu.edu/freepdk15.
[37] NVIDIA. 2018. The NVIDIA deep learning accelerator. InHot Chips: A Symposium

on High Performance Chips.
[38] NVIDIA. 2022. NVIDIA Grace CPU. https://www.nvidia.com/en-us/data-center/

grace-cpu/.
[39] NVIDIA. 2022. NVLink and NVSwitch. https://www.nvidia.com/en-us/data-

center/nvlink/.
[40] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-

harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and
William J. Dally. 2017. SCNN: An accelerator for compressed-sparse convolu-
tional neural networks. In 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA). 27–40. https://doi.org/10.1145/3079856.3080254

[41] PyTorch. 2022. PyTorch: An open source machine learning framework that
accelerates the path from research prototyping to production deployment. http:
//pytorch.org.

[42] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srini-
vasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. 2020. SIGMA: A Sparse
and Irregular GEMM Accelerator with Flexible Interconnects for DNN Training.
In 2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). 58–70. https://doi.org/10.1109/HPCA47549.2020.00015

[43] Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Xi Chen, John
Canny, Pieter Abbeel, and Yun S. Song. 2019. Evaluating Protein Transfer Learning

with TAPE. Curran Associates Inc., Red Hook, NY, USA. https://doi.org/10.5555/
3454287.3455156

[44] Berkeley Architecture Research. 2022. Chisel Hardware Construction Language.
https://chisel.eecs.berkeley.edu/

[45] Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason
Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. 2021.
Biological structure and function emerge from scaling unsupervised learning to
250 million protein sequences. Proceedings of the National Academy of Sciences
118, 15 (2021). https://doi.org/10.1073/pnas.2016239118

[46] Sarah Sirin, James R. Apgar, Eric M. Bennett, and Amy E. Keating. 2016. AB-Bind:
Antibody binding mutational database for computational affinity predictions.
Protein science : a publication of the Protein Society 25, 2 (Feb 2016), 393–409.
https://doi.org/10.1002/pro.2829 26473627[pmid].

[47] Aaron Stillmaker and Bevan Baas. 2017. Scaling equations for the accurate
prediction of CMOS device performance from 180nm to 7nm. Integration 58 (June
2017), 74–81. https://doi.org/10.1016/j.vlsi.2017.02.002

[48] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny
Zhou. 2020. MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited
Devices. In Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics. Association for Computational Linguistics, Online, 2158–2170.
https://doi.org/10.18653/v1/2020.acl-main.195

[49] Synopsys. 2022. Synopsys Silicon Design and Verification. https://www.synopsys.
com.

[50] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham,
Jinfeng Rao, Liu Yang, Sebastian Ruder, and Donald Metzler. 2021. Long Range
Arena : A Benchmark for Efficient Transformers. In International Conference on
Learning Representations. https://openreview.net/forum?id=qVyeW-grC2k

[51] Jakob Uszkoreit. 2017. Transformer: A Novel Neural Network Architecture for
Language Understanding. https://ai.googleblog.com/2017/08/transformer-novel-
neural-network.html.

[52] H. Wang, Z. Zhekai, and S. Han. 2021. SpAtten: Efficient Sparse Attention
Architecture with Cascade Token and Head Purning. In Proceedings of the IEEE
International Symposium on High-Performance Computer Architecture (HPCA).

[53] Kevin K. Yang, Zachary Wu, and Frances H. Arnold. 2019. Machine-learning-
guided directed evolution for protein engineering. Nature Methods 16 (July 2019),
687–694. https://doi.org/10.1038/s41592-019-0496-6

668

https://doi.org/10.1145/2717764.2717783
https://doi.org/10.1145/2717764.2717783
https://doi.org/10.1145/3330345.3330385
https://doi.org/10.1101/2021.07.09.450648
https://doi.org/10.1101/2021.07.09.450648
https://www.eda.ncsu.edu/freepdk15
https://www.nvidia.com/en-us/data-center/grace-cpu/
https://www.nvidia.com/en-us/data-center/grace-cpu/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://doi.org/10.1145/3079856.3080254
http://pytorch.org
http://pytorch.org
https://doi.org/10.1109/HPCA47549.2020.00015
https://doi.org/10.5555/3454287.3455156
https://doi.org/10.5555/3454287.3455156
https://chisel.eecs.berkeley.edu/
https://doi.org/10.1073/pnas.2016239118
https://doi.org/10.1002/pro.2829
https://doi.org/10.1016/j.vlsi.2017.02.002
https://doi.org/10.18653/v1/2020.acl-main.195
https://www.synopsys.com
https://www.synopsys.com
https://openreview.net/forum?id=qVyeW-grC2k
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://doi.org/10.1038/s41592-019-0496-6

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Human Language BERT Model vs. Protein BERT Model
	2.2 Software Protein Binding Evaluation
	2.3 Profiling of the Protein BERT Model
	2.4 Impact of Input Sequence Lengths and Heterogeneity on BERT Performance

	3 ProSE System
	3.1 Software-Hardware Co-Design
	3.2 ProSE Architecture and Microarchitecture

	4 ProSE Design and Evaluation
	4.1 Methodology
	4.2 ProSE Systolic Array Mix Design Space Exploration
	4.3 ProSE Evaluation

	5 Related Work
	6 Conclusion
	7 Acknowledgement
	References

